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1. Introduction 

[!!! What should this include? An historical introduction? A summary of what is in the USER'S 
GUIDE?] 

2. The Primitive Equations in General Coordinates 

Ocean dynamics are described by the 3-D primitive equations for a thin stratified fluid using the 
hydrostatic and Boussinesq approximations. Before deriving the equations in general coordinates, 
we first present, as a reference point, the continuous equations in spherical polar coordinates with 
vertical z-coordinate (these are standard in Bryan-Cox models, see, for example, Semtner 1986 
and Pacanowski and Griffies, 2000). 

momentum equations: 

d 

a$ + -(cos$ va) 

u(1- tan2 $ ) / a 2  - 

v(1-  tan2 $) /a2  + 

2 sin q5 

a2 cos2 4 
2 sin $ 

a2 cos2 $ 

1 d2a 1 8  - 
a2 cos2 $ dX2 + a2 cos $ @ v2cu = 

F&!) = -p-a 
a d  

dz dz 

continuity equation: 

L(1) = 0 

hydrostatic equation: 

-PS 
dP 
dz 
- =  

(3) 

(7) 

equation of state: 
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tracer transport: 

a a  
az  az Dv(cp) = - / € - - cp ,  

where A, 4, x = r - a are longitude, latitude, and depth relative to  mean sea level r = a; g is 
the acceleration due to gravity, f = 2Q sin 4 is the Coriolis parameter, and po is the background 
density of seawater. The prognostic variables in these equations are the eastward and northward 
velocity components (u ,  l i ) ,  the vertical velocity w, the pressure p ,  the density p, and the potential 
temperature 0 and salinity S. In (11) cp represents 0, S or a passive tracer. The pressure 
dependence of the equation of state is usually approximated to  be a function of depth only (see 
Sec. 3.5). AN and AM are the coefficients (here assumed to be spatially constant) for horizontal 
diffusion and viscosity, respectively, and 6 and p are the corresponding vertical mixing coefficients 
which typically depend on the local Richardson number (Pacanowski and Philander, 1981). The 
third terms on the left-hand side in Eqs. (l), (2) are metric terms due to the convective derivatives 
in du /d t  acting on the unit vectors in the A, 4 directions, and the second and third terms in 
brackets in Eqs. (4), ( 5 )  ensure that no stresses are generated due to solid-body rotation (Williams, 
1972). The forcing terms due to wind stress and heat and fresh water fluxes are applied as surface 
boundary conditions to the friction and diffusive terms FV and Dv. The bottom and lateral 
boundary conditions applied in POP (and in most other Bryan-Cox models), are no-flux for 
tracers (zero tracer gradient normal to boundaries), and no-slip for velocities (both components 
of velocity zero on bottom and lateral boundaries). 

To derive the primitive equations in general coordinates, consider the transformation from 
Cartesian coordinates (el, 62, with origin at the center of the Earth) to general horizontal 
coordinates (ql, qy ,  z ) ,  where q2 and qy are arbitrary curvilinear coordinates in the horizontal 
directions, and z = r - a is again the vertical coordinate normal to the surface of the sphere. 
The actual distances along the curvilinear coordinates are denoted z and y, which lie along the 
circumpolar (longitude-like) and azimuthal (latitude-like) coordinate lines, respectively, on dipole 
grids with two arbitrarily located poles (see Sec. 7.2). The differential length element d s  is given 
by 

(where i, j = x, y and repeated indices are summed). The metric coefficients hij depend on the 
local curvature of the coordinates. Differential lengths in the z direction are assumed independent 
of z and y, so no metric coefficients involving x appear. Further restricting ourselves to  orthogonal 
grids, the cross terms vanish, and we have 
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For the purpose of constructing horizontal finite-difference operators corresponding to the var- 
ious terms in the primitive equations, define: 

where Ai and Si can be interpreted as either infinitesimal or finite differences and their associated 
derivatives. Formulas for the basic horizontal operators (gradient, divergence, curl) can be found 
in standard textbooks (e.g., Arfken, 1970). The gradient is 

. , l o $  V$ = x- - + y-- 
hx a q x  h,%, 

= x6x$+f6y$.  

where x and f are unit vectors in the x , y  directions. The horizontal divergence is: 

where ux and uy are the velocity components along the x and y directions. The advection operator 
(Eq. 3) is similar: 

1 1 
C(Q) = -6x (Ay~za )  + - 6 y ( A x ~ y ~ )  + 6 z ( ~ ~ )  . 

AY A X  

The vertical component of the curl operator is 

Laplacian-type operators, which appear in the viscous and diffusive terms, have the form 

1 1 
V * GV$ = -6,(AyG6x~) + -6s,(AxG6y$) . 

AY As 

where G is an arbitrary scalar function of 2 and y. Note that these oprators have been expressed 
in terms of the differences and derivatives Ai and Si,  and hence there is no explicit dependence 
on the new coordinates qi or the metric coefficients hi. In the discrete operators the same is true: 
it is not necessary to have an analytic transformation with metric coefficients describing the new 
coordinate system, it is only necessary to  know the location of the discrete grid points and the 
distances between neighboring gridpoints along the coordinate directions. 
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The other horizontal finite difference operators appearing in the primitive equations can also 
be derived in general coordinates. The Coriolis terms are simply given by 

2 R x u = - k f u , + y f u x .  (23) 

The metric momentum advection terms corresponding to the third terms on the left in Eqs. (1,2) 
are given by (Haltiner and Williams, 1980, p. 442): 

I 

(uv t a a  $ ) / a  -+ uxuyk, - uikx 

(u2 tan +) /a  -+ uXuyk, - u2ky 

Not( that  these revert to the standard forms (left of arrows) in spherical polar coordinates, where 
h, = a cos $, h, = u, u, = u and uy = v. The metric terms in the viscous operators (second and 
third terms on the right in Eqs. (4), (5) require a more careful treatment. These terms were derived 
by Williams (1972) in spherical coordinates, by applying the thin-shell approximation (T  -+ a) to 
the viscous terms expressed as the divergence of a stress tensor whose components are linearly 
proportional to the components of the rate-of-strain tensor. This form is transversely isotropic 
and ensures that for solid rotation the fluid is stress-free. The general coordinate versions of these 
terms are derived in Smith et al. (1995). The results are 

3irX(uz, uy) = A M ( v ~ u ,  - uX(6,ks + 6,kY + 2kz + 2 k 3  
+u,(Jxk, - Syk,) + 'Lky(6,uy) - 2kx(Jyuy)) (28) 

The formula for F H , ( U ~ , U ~ )  is the same with x and y interchanged everywhere on the r.h.s. It 
is straightforward to show that these also reduce to the correct form in the spherical polar limit 
(Eqs. 4, 5). The above forms assume a spatially constant viscosity AM. More terms appear if 
AM is allowed to vary spatially. Wajsowicz (1993) derives the extra terms for spherical polar 
coordinates. In general orthogonal coordinates they take the form: 

.FJJ,(U,, u,) = V * AMVU, - u x ( S Z A ~ k x  + S y A ~ K y  + 2 A ~ ( k :  + k i ) }  

+uy (6, AM Icy - (&AM kx) 
+ ( 2 A M k y  + b y A M ) ( b x u y ) -  (2AMkx +&cAM>(6yuy) - (29) 

The formula for .TH,(U~,, uy) is again the same with x and y interchanged everywhere. 
The general coordinate forms of the anisotropic and biharmonic viscous operators are given in 

Sec, 5.2 below, and the Gent-McWilliams and biharmonic forms of the horizontal diffusion terms 
are given in Sec. 5.1. 
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3. Spatial Discretization 
3.1. Discrete horizontal  and vertical grids 

The placement of model variables on the horizontal B-grid is illustrated in Figure 1. The solid 
lines enclose a “T-cell” and the hatched lines enclose a “U-cell” . Scalars (T, S ,  p ,  p )  are located at  
“T-points” (dots) at the centers of T-cells, and horizontal vectors (us, v,) are located at “U-points” 
(crosses) at the corners of T-cells. The indexing for points (z, j )  in the logically-rectangular 2-D 
horizontal grid is such that i increases in the x direction (eastward for spherical polar coordinates), 
and j increases in the y direction (northward for spherical polar coordinates). A U-point with 
logical indices (2 ,  j )  lies t o  the upper right ( m  northeast) of the T-point with the same indices (i, j ) .  
The index for the vertical dimension IC increases with depth, although the vertical coordinate z ,  
measured from the mean surface level z = 0, decreases with depth, 

When the horizontal grid is generated, the latitude and longitude of each U-point and the 
distances HTN and HTE (see Fig. 1) along the coordinates between adjacent U-points are first 
constructed. Then the latitude and longitude of T-points are computed as the straight average of 
the latitude and longitude of the four surrounding U-points, and the along-coordinate distances 
HUW (HUS) between adjacent T-points are computed as the straight average of the four sur- 
rounding values of HTE (HTN). Thus T-points are located exactly in the middle of the T-cell, 
but because the grid spacing in either direction may be non-uniform, the U-points are not located 
exactly in the middle of the U-cell. 

In addition to  the grid spacings HTN, HTE, HUS, HUW, several other lengths and areas are 
also used in the code. These are defined as follows (see Fig. 1): 

DXU,,, = O.S[HTN,,j + HTNi+,,j] 
DYU,,j = 0.5[HTE,,j + HTEi,j+l] 
DXTi,j = 0.5[HTNi,j + HTNi,j-l] 
DYT,,, = 0.5[HTEi,j + HTEi-l,j] 

UAREAi,j = DXUi,jDYUi,j 
TAREA,,, = DXTi,jDYTi,j 

DXU and DYU are the grid lengths centered on U-points, and DXT and DYT are centered on 
T-points. TAREA and UAREA are the horizontal areas of T-cells and U-cells, respectively. 

The construction of the semi-analytic dipole grids commonly used in POP is described in detail 
in Smith et al. 1995, and is briefly reviewed in Sec. 7.2. These grids are based on an underlying 
orthogonal curvilinear coordinate system with the north grid pole displaced into a land mass 
(typically North America, Asia, or Greenland). The equator is usually retained as a grid line and 
the southern hemisphere is a standard spherical polar grid with the southern grid pole located at  
the true South Pole. These dipole grids are topologically equivalent to a cylinder (periodic in z 

but not in y),  and therefore can be mapped onto a logically-rectangular 2-D array ( i , j )  which is 
cyclic in i. The grids are constructed off line and a file is generated which contains the following 
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% 

Figure 1. The staggered horizontal B-grid. The z-coordinate grid index i increases to right (generally 
eastward), and the y-coordinate index j increases upward (generally northward). Solid lines enclose a 
T-cell, hatched lines a U-cell. The quantities labeled HTN, HTE, HUW, HUS, as well as the model 
prognostic variables (0, S , p ,  uz, u y )  at the locations shown all have grid indices (i, j). 
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w' 
t 

Fig.ire 2: The 3-D T-cell, showing the location of the vertical velocity in T-columns and U-columns. 

Figure 3: The vertical grid. 
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2-D fields: ULAT,ULONG,HTN,HTE,HUS,HUW,ANGLE, where ULAT,,j and ULONGi,, are the 
true latitude and longitude of U-points, and ANGLEi,, is the angle between the z-direction and 
true east at  the U-point ( i , j ) .  The fields ULAT, ULONG and ANGLE are used primarily to 
interpolate the wind stress fields from a latitude-longitude grid to the model grid if needed. ULAT 
is used to compute the Coriolis parameter f a t  each model grid point. 

Figure 2 is a diagram of the full 3-dimensional T-cell, showing the location of the vertical 
velocities w and wu, which advect tracers and momentum, respectively. Note that the vertical 
velocites w are located in the middle of the top and bottom faces of the T-cell, while the horizontal 
velocities are located at  the midpoints of the vertical edges. 

Since POP is a z-level model, the depth of each point (2, j ,  I C )  is independent of its horizontal 
location (unless partial bottom cells are used, see Sec. 6.4). The vertical discretization is illustrated 
in Figure 3. The discrete index k increases from the surface ( I C  = 1) to the deepest level ( I C  = km). 
The thickness of cells at  level k is dzk.  T-points are located exactly in the middle of each level, but 
since the vertical grid may be non-uniform ( d x k  # dzk+l) ,  the interfaces where the vertical velocities 
w lie are not exactly halfway between the T-points. The vertical distances between T-points dxwk 
are just, the average dzwk = O.S(dzk + dzk+l), except a t  the surface where dxwo = 0.5dzl. The 
depth of a T-point at level k is x t k ,  and xwk  is the depth of the bottom of cells at  level I C .  Note 
that while the coordinate z is positive upward, x t k  and Z W ~  are positive depths. Vertical profiles 
of dzk are usually generated offline and read in by the code, but there is an option for generating 
this profile internally. Usually d z k  is small in the upper ocean and increases with depth according 
to a smooth analytic function describing the thickness as a function of depth. This is necessary 
in order to maintain the formal second-order accuracy of the vertical discretization; if the vertical 
spacing changes suddenly the scheme reverts to first order accuracy (see for example Smith et al., 
1995, Sec. 4). 

The topography is defined in the T-cells, which are completely filled with either land or ocean 
(except when optional partial bottom cells are used; see Sec. 6.4). Thus U-points lie exactly on 
the lateral boundaries between land and ocean, and w points lie exactly on the ocean floor. These 
boundary velocites are always set to zero due to  the no-slip boundary conditions, however, the 
vertical. velocities wu along the rims in the stairstep topography may be nonzero (see the discussion 
of velocity boundary conditions in Sec. 3.4). The topography is determined by the 2-D integer 
field KMT,,, which gives the number of open ocean points in each vertical column of T-cells. The 
KMT field is usually generated offline and read from a file in the code. Thus 0 5 KMT 5 km, 
and KMT = 0 indicates a surface land point. In some situations the ocean depth in a column of 
U-points is needed, and this is defined by the field KMUi,,, which is just the minimum of the four 
surrounding values of KMT: 

The depths of columns of ocean T-points and U-points are given, respectively, by: 
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With partial bottom cells the depth of the deepest ocean cell in each column has variable thickenss, 
and the above formulas are modified accordingly (see Sec. 6.4). 

3.2. Finit e-difference operators 

The exact finite-difference versions of the differential operators can be easily derived for the 
various types of staggered horizontal grids A,B,C,D,E (Arakawa and Lamb, 1977) given only the 
forms of the fundamental operators: divergence, gradient, and curl for that  type of mesh. POP 
employs a B-grid (scalars at cell centers, vectors at cell corners) while some OGCM’s use a C-grid 
(scalars at cell centers, vector components normal to cell faces). We will use standard notation 
(Semtner, 1986) for finite-difference derivatives and averages: 

with similar definitions for differences and averages in the y and z directions. These formulas 
strictly apply for uniform grid spacing; where, for example, if $ is a tracer located at  T-points, 
then $ (z + Ax/2) is located on the east face of a T-cell. For nonuniform grid spacing, the above 
definitions should be interpreted such that variables lie exactly at T- or U-cell centers and faces, 
as appropriate. 

The fundamental operators on C-grids have the same form as Eqs. (18)-(22). On B-grids the 
derivatives involve transverse averaging, and the fundamental operators are given by: 

V$ = xs ,~+ysy$x  
1 1 -x 

1 1 -2 

1 1 -2 x 

V u = -6 ,Ay~xy + -~,A,u, 

-6,Ay~,y - -d,Az~x 

AY A X  

AY A, 

AY 

P V x u 

V * GV$J = -6x[AyG6,~]Y + ~ 8 , [ A X G 6 , @  ] . 

The gradient is located at U-points and the divergence, curl and Laplacian are located at T- 
points. In the Laplacian operator G must also be defined at U-points. The factors AX, A, inside 
the difference operators S,, 6, are located at U-points and are given by DXU, DYU, respectively, 
while the factors l /Ax, l/A, outside the difference operators, as well as similar factors in the 
denominators of the difference operators Sx, S,, are evaluated at T-points. For example, the first 
term on the r.h.s. of the divergence (36) a t  the T-point (z, j)  is given by 

In POP (and in other Bryan-Cox models which use a B-grid formulation) all viscous and 
diffusive terms are given in terms of an approximate C-grid discretization in order to ensure they 
will damp checkerboard oscillations on the scale of the grid spacing (see Secs. 3.3.2, 5.1, and 5.2). 
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3.3. Discrete  Tracer Transport Equations 

The discrete tracer transport equations are: 

(40) 
a 
at 4 1  + <)cp  + , w P >  = WCp) + WCp) + Fw(cp) 

where CT is the advection operator in T-cells, and DH, DV are the horizontal and vertical diffusion 
operators, respectively. The factor (1 + E )  is associated with the change in volume of the surface 
layer due to undulations of the free surface, and Fw(cp) is the change in tracer concentration 
associated with the freshwater flux. < and Fw(cp) are given by 

where d k l  is the Kronecker delta, equal to  1 for IC = 1 and zero otherwise. q is the displacement of 
the free surface relative to z = 0, qp) is the freshwater flux per unit area associated with a specific 
source (labeled m) of freshwater (thus E, qkm) = P - E + R - Fice + Mice is the freshwater flux per 
unit area associated with precipitation P ,  evaporation E ,  river runoff R, freezing Fice and melting 
Mice of sea ice), and cpp) is the tracer concentration in the freshwater associated with source m. 
The change in volume of the surface layer due to the freshwater flux is discussed in Sec. 4.5.1, and 
the natural boundary conditions for tracers associated with freshwater flux are discussed in Sec. 
6.3. The boundary conditions on tracers are no-flux normal to  bottom and lateral boundaries. 

POP currently has two options for tracer advection, a standard 
2nd-order centered advection scheme and a 3rd-order upwind scheme (see Sec. 6.1). In the standard 
2nd-order scheme, the advection operator is given by: 

3.3.1. Tracer Advection. 

Again, 8, and Av inside the difference operator are located at U-points, and the mass fluxes 
Ayuxy, A,uyx are located on the lateral faces of T-cells. pX and are also located on the lateral 
faces of T-cells, while pz is located on the top and bottom faces of T-cells. At the surface, pz is 
set equal to zero since there is no advection of tracers across the surface. The vertical velocity w 
at  T-points is determined from the solution of the continuity equation 

which is integrated in a column of T-cells downward from the top with the boundary conditions: 

w = ---q+qw d at z = O  at 
W = O  at z = - - H T  

(45) 

(46) 
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The boundary condition (45) is discussed in more detail in Sec. 4.5.1. 
When integrating from the top down using (44) and (45), the bottom boundary condition (46) 

will only be satisfied to the extent that the solution of the elliptic system of barotropic equations 
for the surface height q has converged exactly (see Sec. 4.5). In practice, this exact convergence 
is not achieved, so the bottom velocity in T-columns is set to zero to ensure no tracers are fluxed 
through the bottom. This amounts to allowing a very small divergence of velocity in the bottom 
cell. 

In versions of POP prior to 1.4.3, the volume of the surface cells is assumed constant, and no 
account is taken of the change in volume of the surface cells when the free surface height changes. 
Thus E = 0 and qw = 0 in Eqs. (40), (41) and (42), and the freshwater flux is approximated 
as a virtual salinity flux and imposed as a boundary condition on the vertical diffusion operator. 
In addition, the tracers are advected through the surface in this formulation using (43) with the 
vertical velocity given by (45) and pz = 91 at the surface. One problem with this approximation 
is that  the advective flux of tracers through the surface is not zero in global average. The globally- 
integrated vertical mass flux vanishes, but the integrated tracer flux does not. In practice, we 
have found that the residual surface tracer fluxes associated with this are usually small, but 
in some situations they may be nonnegligible. (Note: the global mean residual surface tracer 
fluxes are standard diagnostic model output in the earlier versions of POP without the variable 
thickness surface layer.) Because the residual surface flux is nonzero, the global mean tracers are 
not conserved in the absence of surface forcing. In the newer versions of the code based on (40), 
(41) and (42), global mean tracers (in particular total salt) are conserved exactly. The differences 
between the old version and the new version with the variable-thickess surface layer are detailed 
in Sec. 6.3. 
3.3.2. Horizontal Tracer Diffusion. POP has three options for horizontal tracer diffusion: 

1) horizontal Laplacian diffusion, 2) horizontal biharmonic diffusion, 3) the Gent-McWilliams 
parameterization, which includes along-isopycnal tracer diffusion and tracer advection with an 
additional eddy-induced transport velocity. All of these are implemented for a spatially-varying 
diffusivity. The first of these options (Laplacian diffusion) is described here, the other two options 
are discussed in Sec. 5.1. The discrete horizontal Laplacian diffusion operator is given by: 

Note that no lateral averaging is involved as in Eq. (38). Thus the Laplacian is approximated 
as a 5-point stencil as would be used on a C-grid. The factors A,, Ay inside the difference 
operator are given by HTN, HTE, respectively (see Fig. l), and AH,  defined at T-points, is 
averaged across the T-cell faces. As mentioned above, all the horizontal diffusive operators in 
POP that would normally involve 9-point operators (including the GM parameterization and the 
horizontal friction operators), are approximated by 5-point C-grid operators in order to ensure 
that they damp checkerboard noise on the grid scale. B-grid Laplacian-type operators like (38) 
have a checkerboard null space, i.e., they yield zero when applied to a +/- checkerboard field, 
and thus cannot damp noise of this character. The only Laplacian-type operator which uses a 
B-grid discretization is the elliptic operator in the implicit barotropic system. There the B-grid 
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discretization is required in order to maintain energetic consistency (Smith et al., 1992, Dukowicz 
et al., 1993, see also Secs. 3.6: and 4.5) .  The boundary conditions on the diffusive operator (47) 
are that tracer gradients S,p, S,p are zero normal to lateral boundaries. 

3.3.3. Vertical Tracer Diffusion. The spatial discretization of the vertical diffusion oper- 
ator is given by: 

%(VI = 6 2 ( 4 V )  

(48) 
1 &;/E-+ ( P k - 1  - Pk) K k + i  (pk - ( P k + l )  

1 .  =2 -{ - 
d x k  dZk-1  2 dz&a 

where p k  is a tracer a t  level k ,  and K k - 1 ,  K ~ + +  are evaluated on the top and bottom faces, 
respectively, of the T-cell a t  lcvel k ,  and dxk-L  = dzwbl ,  dzlctl = diZ?.uk. The boundary conditions 
at  the top and bottom of the column are 

2 

2 2 

~6,cp -+ Qv, at x = 0 
~c6,cp  --+ 0 at  x = -HT (49) 

where QV is the surface flux of tracer cp (e.g., heat flux for temperature and equivalent salt flux 
associated with freshwater flux for salinity). The modifications to  this discretization when partial 
bottom cells are used is described in Sec. 6.4. The diffusive term may either be evaluated explicitly 
or implicitly. The implicit treatment is described in Sec. 4.2.2. With explicit mixing, a convective 
adjustment routine may also be used to more efficiently mix tracers when the column is unstable 
(see Sec. 5.3.1). Various subgrid-scale parameterizations for the vertical diffusivity are discussed 
in Sec. 5.3.  

3.4. Discrete Momentum Equations. 

The momentum equations discretized on the B-grid are given by: 

(51) 
d 1 
-uY + Lu(uY) + u ~ u ~ ~ ~  - uiky + fux = -- fiYpx + t ix) + Fv(~y) 
3t Po 

[!!! NOTE: Currently the code is in cgs units and it is assumed that po = l.Ogm ~ m - ~ ,  so it never 
explicitly appears. Is this OK? Do we want to try and change it? If the Boussinesq correction 
(Sec. 3.5.1) is used, then this factor is already taken into account, because the factor r(p)  in (65) 
is normalized such that the pressure gradient should be divided by po = 1.0.1 In these equations 
no account has been taken of the change in volume of the surface layer due to undulations of 
the free surface. Therefore, no terms involving E' appear as in the tracer transport equation (40). 
The justification for this is that the global mean momentum, unlike the global mean tracers, 
is not conserved in the absence of forcing, so there is less motivation to correct for momentum 
nonconservation due to surface height fluctuations. Furthermore, the error introduced is typically 
small compared to the uncertainty in the applied wind stress. 
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Figure 4: Advective mass Auxes through lateral faces o f  T-cells (solid lines) and U-cells (hatched line). 
U-cell fluxes are the average of the four surrounding T-cell fluxes. A similar averaging applies to the 
vertical fluxes. 

The nonlinear momentum advection term is discretized as: 
1 1 -  

&,(a) = -&[(Ay~,y)”yE’] + -dy[(Ax~yz)xy@‘] + S,(W”E!’) . 
AY A X  

This is a second-order centered advection scheme and is currently the only option available in 
POP for momentum advection. It has the property that global mean kinetic energy is conserved 
by advection. Momentum is conserved in the interior by advection, but not on the boundaries 
(see Sec. 3.6 on energetic consistency). The mass fluxes in the operator include an extra average 
in both horizontal directions, denoted (..) . Both the horizontal and vertical mass fluxes in a 
U-cell are the average of the four surrounding T-cell mass fluxes. This is illustrated in Figure 4 
for the mass flux in the z-direction. As a consequence, the vertical velocity in a U-cell is exactly 
the area-weighted average of the four surrounding T-cell vertical velocities w. This averaging is 
necessary in order to maintain the energetic balance between the global mean work done by the 
pressure gradient and the change in gravitational potential energy (Smith et al., 1992, see also 
Sec. 3.6 on energetic consistency). An additional advantage of this flux averaging in U-cells is that 
it substantially reduces noise in the vertical velocity field compared to other approaches (Webb, 
1995). At the bottom of a column of ocean U-cells wu is not necessarily zero, since it is the 
weighted average of the surrounding w’s, some of which may be nonzero if it is a “rim” point 
where k = KMU but at least one of the surrounding T-points has k < KMT. It can be shown that 
the value of w’ a t  these points approximates the boundary condition for tangential flow along 

-XY 
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the sloping bottom w = --u V H  (Semtner, 1986, Eq. 34). Mornentum is advected through the 
surface using the vertical velocity (45) averaged to U-points and with Gz = 01 (where a! = u, or 
,uY) in (52). 

The metric terms (third and fourth terms on the 1.h.s. in Eq. 51) are 
constructed using a simple C-grid discretization of the metric factors (Eqs. 26, 27). Specifically, 
k ,  and ky at U-points are given by: 

3.4.1. Metric Terms. 

KXUi,j = [HUPVi+l,j - HUWi,j]/UAREAi,j 
KYUi,j = [HUSi,j+l - HUSi,j]/UAREAi,j (53) 

3.4.2., 3 Korizontal Friction. Several options for horizontal friction are available in the code. 
In this SI ,ion a simple spatial discretization of the Laplacian-type formulation with a spatially 
varying viscous coefficient as given by (29) is presented. The biharmonic friction operator obtained 
by applying (28) twice is described in Sec. 5.2.2. More sophisticated formulations of the viscosity 
based on a functional discretization of the friction operator formulated as the divergence of a 
visccus stress that  is linearly related to the components of the strain-rate tensor are described in 
Sect ona 5.2.3 and 5.2.4. These include an anisotropic formulation of the viscosity and the use of 
Smagorinksy-type nonlinear viscous coefficients. 

The Laplacian horizontal friction terms (28) and (29) are constructed from a C-grid discretiza- 
tion of both the Laplacian and the metric terms. The discrete Laplacian terms are given by: 

(54) 
1 -  1 - 7  

AY A X  
V AMVU = - - - ~ , ( A M ~ A ~ ~ , U )  +  AM^A AM A,~,u) 

where A ~ I ,  defined a t  U-points, is averaged across cell faces inside the divergence. Terms propor- 
tional to k ,  and kY in (28) and (29) are evaluated using (53). Terms involving derivatives of k ,  
and k ,  are evaluated with IC,, IC,  defined at T-points and averaged along U-cell faces. For example, 
the term 6 , A ~ k ,  is evaluated as: 

(55) 
2 - 7  6,& I C ,  = 

- - [ ( A M ) i , j  + (AM)i-l,jl[KXTi,j+l + KXTi,jl)/DXUi,j 
0,25{ [ ( A ~ ) i + l , j  -k (A~)i,j][KXTi+l,j+l 4- KXTi+1,j] 

where A M  is averaged across the U-cell faces, and k,, k ,  at T-points are given by 

KXTi,j = [HTEi,j - HTEi-l,j]/TAREAi,j 
KYTi,j = [HTN,,j - HTNi,j-l]/TAREAi,j 

Finally, in those terms in (28,29) that  involve single derivatives of the velocities or viscosities (e.g. 
Sxuy or, S X A ~ )  the derivatives are evaluated as differences across the cell without using the central 
value. For example, 6,uY at point ( i , j )  is evaluated as: 

The no-slip boundary conditions are implemented by simply setting u, = uy = 0 on all lateral 
boundary points. Modifications to the operator when parital bottom cells are used are described 
in Sec. 6.4. 
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3.4.3. Vertical Friction. The spatial discretization of the vertical friction terms is essentially 
identical to that of the vertical diffusion described in Sec. 3.3.3. The spatial discretization of both 
Fv(uz) and Fv(uy)  is identical to Eq. (48) with K replaced by the vertical viscosity p and cp 
replaced by one of the velocity components u, or uy. Modifications for partial bottom cells are 
discussed in Sec. 6.4. The boundary conditions at the top and bottom of the column of U-points 
are 

where ( T ~ ,  T ~ )  are the components of the surface wind stress along the coordinate directions, and 
a quadratic drag term is applied at the bottom of the column. The dimensionless constant c 
is typically chosen to  be of order lod3. The semi-implicit treatment of these terms is described 
in Sec. 4.4.2. Various subgrid-scale parameterizations for the vertical viscosity are described in 
See. 5.3. 

3.5. Equation of State 

POP requires an equation of state in the form 

to relate density, p, to  the prognostic variables 0 and S; see (10). To aviod a nonlinear integration 
of the hydrostatic equation (9), the pressure in the equation of state is approximately evaluated 
as a time-independent function of depth by means of the equation 

p = p , ( z )  = 0.059808[exp(-0.025~) - 11 + 0.100766~ + 2.28405 x 10-722 , (60) 

where pressure p is in bars and depth z is in meters. This formula is derived in Dukowicz (2001) 
from the global mean climatology of Levitus et al. (1994a,b). At a number of places in the code 
partial derivatives of p with respect to  0 and S may also be necessary. 

There are four options in the code for the equation of state: 

(A) The density may be obtained from the formula of Jackett and McDougall (1995). 

P ( @ ,  s, 0) 
= 1 - p/K(O,  s, p )  ' 

The numerator, p ( 0 ,  S, 0), is a 15-term equation in powers of S and 0 with coefficients given by the 
UNESCO international standard equation of state (Fofonoff and Millard, 1983). The secant bulk 
modulus, K ( O ,  S ,p) ,  is a 26-term equation in powers of 0, S and p ,  obtained from a least-squres 
fit to the expression for the secant bulk modulus as a function of the in situ temperature (Fofonoff 
and Millard, 1983). This density equation is valid in the range 0 5 S 5 42psu, -2" 5 0 5 40"C, 
and 0 5 p 5 1000bar. The total of 41 terms in this equation of state makes it the most expensive 
of the four available options. 
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(B) A cubic polynomial fit to the UNESCO international standard equation of state (Fofonoff and 
Millard, 1983) which has the form 

where O,,j(k) and S,,f(k) are reference values of the potential temperature and salinity for each 
model level. The set of nine coefficients in the cubic polynomial for each level are pre-calculated 
based on a least-squres fit to the international standard equation of state as prescribed by Bryan 
and Cox(1972). The range of validity of this equation is depth dependent and is specified during 
the fitting procedure to encompass typically observed oceanographic conditions. This results in a 
fairly narrow range of validity at  depth which may not be appropriate for certain simulations or 
for evaluating density resulting from large adiabatic displacements. The reduction from 41 terms 
to 9, however, represents a considerable cost savings over the full UNESCO equation of state. 

(C) A 25-coefficient approximation of the Feistel and Hagen (1995) equation of state (which is 
more accurate relative to laboratory data than the UNESCO form), derived by McDougall et al., 
(2002). 

where PI is a 12 term polynornial and Pz is a 13-term polynomial. This density equation is valid 
in the range 0 5 S 5 40psu, -2" 5 0 5 33"C, at  the surface, diminishing to 30 5 S 5 40psu, 
-2" 5 0 5 12°C at 550 bar. However, the authors report that the equation is well behaved in 
the range 0 5 S 5 50psu, -10" 5 0 5 50°C, and 0 5 p 5 lOOObar This equation of state is 
intermediate in cost between the UNESCO form (A) and the cubic polynomial form (B). It is 
currently the preferred option for CCSM integrations. 

(D) A simple Iinear equation of state given by 

p = po - 2.5-40 + 7.6 x 10-4S , (64) 

where p is in gm/cm3, 0 is in "C, and S is in practical salinity units (psu). [!!!NOTE: as far as I 
can tell, the po term is not included in the code for the full density with the linear EOS - check 
with Phil.] 

3.5.1. Boussinesq Correction. The pressure-gradient terms in the momentum equations 
(50) and (51) are an approximation of p-lVp, introduced as part of the Boussinesq approximation. 
Furthermore, the conversion of pressure to depth in the equation of state by means of (60) can have 
significant dynamic consequences through its effect on the pressure gradient (Dewar et al., 1998). 
Both of these errors can be greatly reduced by transforming the density as follows (Dukowicz 
2001): 
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where p* is termed the thermobaric density, and r ( p )  is a nondimensional function of pressure that 
extracts the pressure-dependent part of the adiabatic compressibility from the density along the 
global-mean Levitus climatology: 

r ( p )  = 1.02819 - 2.93161 x lO-*exp(-0,05p) + 4.4004 x 1 0 - 5 p ,  (66) 
where p is in bars. This leads to the definition of an associated thermobaric pressure p*:  

such that ‘ l i p  hydrostatic equation (9) becomes 

= -p*g , dP* 
dz 
- 

and the pressure gradient force is transformed into 
1 1 1 
- v p  = - v p *  M - v p *  . 
P P* Po 

The effective equation of state in terms of these new variables becomes 

P* = P ( @ ,  s, P ( P * ) > l M P * ) )  = P * P ,  S,P*) (70) 
The advantage of this transformation is that  the effective adiabatic compressibility associated with 
the equation of state is now at least an order of magnitude lower. This means that the variation 
of density with depth is much lower and that fluctuations of pressure in the equation of state have 
a much smaller effect on density. Thus, the errors associated with the Boussinesq approximation 
in the pressure gradient force and the linearization of the equation of state in the transformed 
variables are at least an order of magnitude smaller than without the transformation, as explained 
in Dukowicz (2001). 

The pressure gradient force is approximated by p;’Vp*, and the hydrostatic equation becomes 

This implies that  the pressure variable handled in POP is the thermobaric pressure p * ,  not p .  The 
pressure enters only in the pressure gradient and in the equation of state and effects nothing else. 
Should the true pressure ever be required it is easily obtainable from p* using the relation (67). 
Given this, we shall drop the notation p* and henceforth interpret p to imply the thermobaric 
pressure. 

3.5.2. The pressure at depth z is obtained by integrating the 
hydrostatic equation from x = 0 (the “hydrostatic prvssure” p h )  and adding the contribution from 
the surface pressure p ,  associated with undulations of the free surface: 

Hydrostatic Pressure. 

P ( Z ,  Y, 4 = P , ( T  Y) + P h b  Y , 4  
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In the code only the horizontal pressure gradients are needed, and these are evaluated by integrat- 
ing the horizontal gradients of density in (72). The discrete formulas for the horizontal pressure 
gradients a t  level IC are: 

k l  
d x z y  = d X ~ '  + 9 2[&p&-," + &z] dz-1 2 

m=l 
k i  

where dxm-i = dxwm-l, and dx-1 = 0.5dxl. Here pk = prn/r(pozt,) if the Boussinesq correction 
is used, othirwise p& = Pm, where Pm is the density at level m, and pm = p1 when m = 0. 

This is a feature that is currently not in the code but will 
be added later. The expansion diagnositc is supposed to account for the change in global mean sea 
level due to two effects: 1) the change in volume associated with the net accumulated freshwater 
flux into the ocean (from precipitation, evaporation, melting and freezing of sea ice, and river 
runnofi); and 2) the change in volume associated with steric expansion due to changes in global 
mean density. If the model employs virtual salinity fluxes, either from restoring to  climatological 
surface salinity or from the conversion of actual freshwater fluxes to virtual salinity fluxes (e.g., 
when the model is run without using the natural boundary conditions for freshwater flux as 
discussed in Sec. 6.3) then the expansion effects due to 1) and 2) are not easily separated: a 
virtual salinity flux will change the salinity and hence the density through the equation of state, 
on the other hand, a virtual salinity flux is usually associated with an actual freshwater flux 
which changes the volume as well, and it is not clear how to  cleanly separate these volume and 
density changes. However, in the steric effect the change in density is primarily associated with 
thermal expansion due to  heating or cooling, rather than changes in salinity. Hence, we expect 
that computing the steric effect due to  density changes without including volume changes due to 
freshwater flux provides a useful diagnositic. Therefore, in the code the change in surface elevation 
due to  the steric effect can be computed assuming there is no change in total volume. The change 
in sur€ace elevation due to steric expansion is computed as: 

2 

3.5.3. Expansion Diagnostic. 

where (N), the ratio of ocean volume to surface area, is the mean ocean depth, ( P O )  is the initial 
global mean density, (p") is the global mean density at the nth model timestep computed assuming 
there is no change in total volume, and (q") is the estimated change in sea-surface elevation at 
the nth timestep due to steric expansion only, If natural boundary conditions for freshwater flux 
are employed, then the actua,l volume of the ocean in the model does change (see Sec. 6.3), and 
the corresponding change in rnean sea-level is diagnosed as the actual global-mean sea level in the 
model. This change can be added to the change due to steric expansion to obtain an approximate 
total change in global mean sea level due to the combined effects of 1) and 2). 
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3.6. Energetic Consis tency 

This section is not yet comlete. The energetic balances in the free-surface formulation are 
described in detail in Dukowicz and Smith (1994). However, this reference predates the variable- 
surface thickness layer (Sec. 6.3) and partial bottom cells (Sec. 6.4), both of which influence the 
energetic balances. 

3.7. C F L  Diagnost ics  

This section is not yet complete. The POP code prints several global CFL diagnostics to 
standard output. These are associated with restrictions on numerical stability asociated with the 
explicit integration of advection of tracers and momentum (both horizontal and vertical), viscosity, 
and diffusion. THe CFL diagnostics depend on both the space and time discretization. They are 
computed in the POP source file diagn0stics.F 

4. Time Discretization 

The POP model uses a 3-time-level second-order-accurate modified leapfrog scheme for stepping 
forward in time. I t  is modified in the sense that some terms are evaluated semi-implicitly, and of 
the terms that are treated explicitly, only the advection operators are actually evaluated at  the 
central time level, as in a pure leapfrog scheme. The diffusive terms are evaluated using a forward 
step. The reason for this is that  the centered advection scheme is unstable for forward steps, and 
the diffusive scheme is unstable for leapfrog steps. 

4.1. Filtering Timesteps 

Leapfrog schemes can develop computational noise due to  the partial decoupling of even and odd 
timesteps. In a pure leapfrog scheme they are completely decoupled and the solutions on the even 
and odd steps can evolve completely independently, leading to 2At oscillations in time. There are 
several methods to  damp the leapfrog computational mode, two of which are currently implemented 
in POP. One is to occasionally take a forward step or an Euler forward-backward step (sometimes 
called a ‘Matsuno’ timestep, Haltiner and Williams, 1980). The Matsuno step is more expensive 
than a forward step, but it is stable for advection. The other method is to  occasionally perform an 
averaging of the solution at three successive time levels to the two intermediate times, back up half 
a timestep and proceed. The later procedure is refered to as an “averaging timestep” (Dukowicz 
and Smith 1994) and is the recommended method for eliminating the leapfrog computational mode. 
The leapfrog scheme generates two different “trajectories” of the solution, one corresponding to 
even and one to odd steps. The advantage of the averaging step is that  it places the solution 
on the average trajectory, whereas the forward and Matsuno steps selects only one trajectory, 
corresponding to  either the even or the odd solution. Experience has shown that some model 
configurations are not stable using Matsuno filtering timesteps, and this is especially true with the 
variable-thickness surface layer (Sec. 6.3) .  The Matsuno step is a forward predictor step followed 
by a “backward” step which is essentially a repeat of the forward step but using the predicted 
prognostic variables from the first pass to evaluate all terms except the time-tendency term (see 
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Sec. 4.2). On the very first time step of a spinup from rest a forward step is taken to avoid 
immediately exciting a leapfrog computational mode (this feature is hardwired into the code). In 
the presentation below, the time discretization of various terms will first be presented for a regular 
leapfrog step, then the discretization for the forward and backward steps will be given. 

4.2. Tracer Transport Equations 

Labeling the three time levels on a given step as n-1, n, and n+l ,  the tracer transport equation 
(40) is discretized in time as follows: 

(1 + [n+ l )pn+ l  - (1 + tn-1)cpn-l = T[-@)([pn)  + DD,((p"-l) + D"(& + 3-3 (75) 
--h cp Xp(n+') + (1 - X ) ( p - l )  (76) 

where At is the timestep and T = 2At. .Fg is given by (42) with qw and cp evaluated at time n, 
and En is given by (41) with 7 evaluated at  time n. The superscript (n) on the advection operator 
indicates that  the advective mass fluxes are evaluated using the time n velocities. The vertical 
diffusion term may be evaluated either explicitly or semi-implicitly, In the explicit case X = 0. For 
semi-implicit diffusion X 2 1/2 is required for stability, and the code is usually run with X = 1. 
The surface forcing (49), applied as a boundary condition on the vertical diffusion operator, is 
evaluated at time n for both explicit and semi-implicit mixing. The modifications to the tracer 
transport equations with implicit vertical mixing are decribed in Sec. 4.2.2. 

With pressure averaging (see Sec. 4.4.1) the potential temperature and salinity at the new time 
are needed to evaluate the pressure gradient at the new time. This is required in the baroclinic 
momentum equations before the barotropic equations have been solved for the surface height at 
the new time. Therefore, (75) cannot be used to  predict the new tracers since tn+l is not yet 
known. Instead an approximation is made to  predict the new temperature and salinity which are 
then used to evaluate the pressure gradient at the new time. After the barotropic equations have 
been solved, the new potential temperature and salinity are corrected so that they satisfy (75) 
exactly. The equations for predicting and correcting the tracers at the new time are obtained as 
follows. The 1.h.s. of (75), which involves the unknown surface height qn+l, is approximated as: 

(1 + y + l ) c p n + l  - (1 + [n-l)(pn-l = (@+I - cpn-'> 

5% (1 + t")((p"f' - p"-') + 2(t" - J"-l)pn (77) 

With this approximation, the equations for predicting and correcting 0 and S are given by: 

Predictor: 
(1 + [")($"+' - cp"-') = -2(5" - Jn-')pn + r F  

(1 + [n+l)cpn+l = (1 + J")cp + (p - 5"-')(2(p" - Cp"-') 

(78) 

(79) 

Corrector: 
-n+l 
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where p+' is the predicted tracer at  the new time, and F represents all terms in brackets on the 
r.h.s. of (75). Note that these equations are used only to predict and correct 0 and S ;  all passive 
tracers are updated directly using (75). 

The time discretization for the two-time-level forward and backward steps is given by 

Forward step: 
(1 + <*)cp* - (1 + J")cp" = T[--C$)((p") + DH(cp") + Dv(VX) + F;] 

(1 + <"+l)cp"+l - (1 +J")cp" = 7[--C$)(cp*) + DH(cp*) + Dv(VX) + F;] 

(80) = Acp* + (1 - A)cp" 

Backward step: 

(81) = (1 - A)cp" 

Here 7 = At and cp*,  the predicted tracer at the new time from the forward step, is used to evaluate 
the r.h.s. in the backward step. <* is given by (41) with q = q*. L$) is the advection operator 
evaluated using the predicted velocities from the forward step (see Sec. 4.4). For a forward step 
only, cp* = cpn+l. The surface forcing applied to Dv, as well as the freshwater tracer flux Fw, are 
evaluated a t  time n in both forward and backward steps. 
4.2.1. Tracer Acceleration. The acceleration techique of Bryan (1984) can be used to 

more quickly spin up the model to a steady-state by modifying the timestep for tracers in the 
deep ocean. The basic method is to modify the time step T as follows: in the baroclinic and 
barotropic momentum equations (94) and (113) 

7 + TiU) = 7 q a  (82) 

and in the tracer transport equation (75) 

where superscripts u and cp denote timesteps for momentum and tracers, respectively. Q and yk are 
acceleration factors that  are specified by the namelist model input: dtuxcel = a-1, dttzcel(k) = 

A couple of points should be made about the use of acceleration. First, the method is only 
guaranteed to reach the correct steady state solution if the external forcing includes some kind 
of restoring term for the tracer (this will drive the solution toward a unique steady state with or 
without acceleration). Second, if in the surface layer a # 71, the tracer transport and barotropic 
continuity equations will be inconsistent, and this can cause the model to blow up with the variable- 
thickness surface layer (see the discussion at the end of Sec. 6.3). Furthermore, if a # 1 or yk # 1 
then the surface forcing for momentum and tracers will not occur at the correct time. The model 
calender and all the forcing fields are based on the unaccelerated surface tracer time step. For this 
reason we recommend that momentum acceleration not be used, and that the tracer acceleration 
only be applied at subsurface levels so that a = 71 = 1. A dissadvantage of depth-dependent tracer 
acceleration is that i t  leads to non-conservative advective and diffusive fluxes when yl # ybl. For 

( 'Yk1- l .  
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this reason it is recommended that profiles of yk be smooth functions of depth, and that the largest 
vertical discontinuities in yk be restricted to depths where fluxes are small enough that tracers 
are well conserved. Nevertheless, it should be noted that (with restoring boundary conditions) 
the correct steady-state solution will be reached even when yk varies with depth. The depth- 
dependent tracer timestep must also be accounted for in the convective adjustment and vertical 
mixing routines These changes are described in Secs. 5.3.1, 4.2.3, and 4.4.2. 

4.2.2. Implicit Vertical Diffusion. The tracer equations with implicit vertical diffusion 
involve the solution of a tridiagonal system in each vertical column of grid points. This is a 
relatively easy thing to do since the system does not involve any coupling with neighboring points 
in the horizontal direction. The equations solved in the code are 

[l + Cn+' - X.rA(~)]Llcp = .[-C8)(cpn) + DH(p"-') + A(~)cp"-' + .2",] 
A ( K )  = G,rcd, , Acp cpn+' - vn-l (84) 

where T = 2At. For explicit diffusion X = 0, so the r.h.s. corresponds to the exact Acp in the 
explicit case. The system is solved for the change in tracer Acp, subject to the no-flux boundary 
conditions 

d,& = 0 at both z = 0 and z = -HT . (85) 

Note that since the surface forcing and freshwater tracer fluxes are evaluated a t  time n they are 
entirely contained in the r.h.s. of (84), and hence are not directly imposed as a boundary condition 
on the operator. 

The predictor and corrector steps for updating 0 and S with pressure averaging (Sec. 4.4.1) 
are given by: 

where F represents all terms in brackets on the r.h.s. of (84). These reduce to (78) and (79) in the 
limit X = 0. Note that both the predictor and corrector steps involve the solution of a tridiagonal 
system. 

In forward and backward timesteps the implicit equations have the form: 

Forward step: 
[I + E* - XTA(K)]A(P = ~[- ,C$'(cp")  + D*(cpn) + A(&)cpn + 3",] 
Acp E cp* - cpn (88) 

Backward step: 
[l + En+' - X.rA(rc)JAcp = ~[-Lt ) (cp*)  + DH(cp*) + A(~)cp, + 3",] 
Aip 5 cpn+l - cpn (89) 
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where r = At. 
4.2.3. Tridiagonal Solver. For the tridiagonal solution of (84), (86), (87), (88) or ( 8 9 ) ,  

a new algorithm is used (Schopf and Loughe, 1995) which is more accurate and stable than 
traditional methods. These equations have the form: 

where XI, = Acp at level k, Rk is the r.h.s., and a depth-dependent timestep At, (7, = 2Atk 
for leapfrog and Tk = At, for forward/backward timesteps) is used with tracer acceleration (see 
Sec. 4.2.1). Here E = JnS1, except in the predictor step (86) where = tn. (90) can be rewritten 
in the form of a tridiagonal system: 

The algorithm for the solution of this system involves a loop over vertical levels to determine the 
coefficients: 

The loop begins at k = 1 with A0 = Bo = Fo = 0. This is followed by another vertical loop to 
determine the solution by back substitution: 

This loop begins at the bottom with X,,++l = 0 when k = KMT. 

4.3. Splitting of the Barotropic and Baroclinic Modes 

The barotropic mode of the primitive equations supports fast gravity waves with speeds of 
Jsrr N 200 m s-l. If resolved numerically, these waves impose a severe restriction on the model 
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timestep. However, they have little effect on the dynamics, especially on timescales longer than 
a day or so. To overcome this severe limitation on the timestep, the barotropic mode is split off 
and solved as a separate 2-D system (see Sec. 4.5).  

The barotropic equations are taken to be the vertically-integrated momentum and continuity 
equations. The true barotropic mode is not exactly isolated by the vertically-integrated system, 
except in the limit of a flat-bottom topography, a rigid lid, and a depth-independent buoyancy 
frequency. Nevertheless, it suffices in practice to isolate and treat the vertically-integrated system. 
Then, provided advective and diffusive CFL limits do not control the timestep, the baroclinic 
equations can be integrated with a timestep that is controlled by the gravity-wave speed of the 
first inter?. 1 1  mode, which is of order 2 m s-l, two orders of magnitude smaller than the barotropic 
wave spc : ‘The procedure for solving the split barotropic-baroclinic system is as follows. 

1) First the momentum equations are solved, without including the surface pressure gradient, for 
an auxiliary velocity u’. This is what the momentum at the new time would be in the absence 
of the surface pressure gradient, which is depth-independent and hence determined only by the 
solul ion of the vertically-integrated system. The time discretization of the resulting “baroclinic 
momentum equations” written in vector form is: 

where T = 2At, &, represents the advection operator plus metric terms acting on both components 
of velocity, and .FJI and .Fv are now horizontal vectors. The overbars indicate various averages 
over the three time levels for the semi-implicit treatment of the Coriolis, hydrostatic pressure 
gradient, and vertical mixing terms. The velocities are averaged as: 

(95) 
(96) 

ri“’ = QU’ + yun + (1 - a - y)un-l 
-ax - - Xu’ + (1 - )c)un-l 

where a, y, X are coefficients used to  vary the time-centering of the velocities. The averaging for 
the hydrostatic pressure ph is discussed in Sec. 3.5.2. To maintain an accurate time discretization 
of geostrophic balance, it is important that ,  in the averaging over the three time levels, the 
velocity and pressure are centered a t  the same time, i.e. if they are centered at time (n), then the 
coefficients for the variables at times (n + 1) and (n - 1) must be equal. 

2) Next the vertical average of u’ is subtracted. The result is the baroclinic velocity: 

3) Finally, the barotropic system is solved for the barotropic velocity at the new time UnS1 (see 
Sec. 4.5),  and this is added to the normalized auxiliary velocities to obtain the full velocities at  



the new time: 
Un+l - - fi; + un+l 

k 

The barotropic velocity is defined by 
1 11 

U = -/ d z u ( z )  
H + v  - H  
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(98) 

where is the displacement of the free surface relative to  z = 0. As discussed in Secs. 4.5 and 
6.3, in the current version of the POP model we assume 7 << dzl and approximate the barotropic 
velocity as the vertical integral from z = -H to  z = 0 in (99). 

4.4. Baroclinic Momentum Equations 

(94). For forward and backward steps, the time discretization is 
The time discretization of the baroclinic momentum equations for leapfrog steps is given by 

Forward steps: 

Backward steps: 

where r = At, and p i  is the predicted hydrostatic pressure from the forward step. u' is the 
unnormalized momentum, as in (94) and (97), and u'* is the same quantity predicted by the 
forward step only. 6 = 0.5 is hardwired into the code. This choice was made (rather than choosing 
6 = 0 where both Coriolis and pressure gradient would be centered and time n) because the 
forward step is unstable if the Coriolis terms is treated explicitly. 

4.4.1. Pressure Averaging. The method of Brown and Campana (1978) is used for the 
semi-implicit treatment of the hydrostatic pressure gradient on leapfrog timesteps, where the 
averaging of the pressure over the three time levels in (94) is given by 

This choice of coefficients allows for a factor of two increase in the CFL limit associated with 
internal gravity waves, and hence a factor of two increase in timestep if internal gravity waves are 
the controlling factor (see Maltrud et al., 1998, Sec. 2.3 for a simple proof of this property). 



29 

The new pressure at  time (n  + 1) is obtained by updating the tracer transport equations for 
the temperature 0 and salinity S before the baroclinic momentum equations are solved. Then the 
density and hydrostatic pressure at  the new time can be diagnosed from the equation of state and 
the hydrostatic equation. An approximation is used in the code for efficiency if explicit vertical 
mixing is used with convective adjustment. With explicit vertical mixing the loops over vertical 
levels in the tracer and momentum updates are fused, (Note: this will no longer be true in POP 
2.0) but the new pressure can still be evaluated if the tracers are updated first at each level. 
However, the convective adjustment is done afterwards, outside the IC loop, and this modifies the 
new 0 and S and hence the new pressure. So, in this case the new pressure before convective 
adjustment is used in (102). With implicit vertical mixing the vertical loops over tracer and 
momentum are separated, and the implicit vertical diffusion of tracers is done after the tracer 
loop and before the momentum loop, so in that case the exact pressure at the new time is used 
in (102). Equation (102) applies to leapfrog timesteps. On forward steps the time n pressure is 
used, and on backward steps the predicted pressure from the first pass is used (see (loo), (101)). 
4.4.2. Semi-Implicit Treatment of Coriolis and Vertical Friction Terms. A semi- 

implicit treatment of the Coriolis terms can allow a somewhat longer timestep due to filtering 
of inertial waves and barotropic Rossby waves, but the main motivation in POP is to damp the 
Rossby-wave computational mode which appears in the implicit free-surface formulation of the 
barotropic equations (see Sec. 4.5 and Dukowicz and Smith 1994, Eqn. 43). Since the barotropic 
equations are the exact vertical average of the momentum equations, the Coriolis terms in the 
baroclinic equations must also be treated semi-implicitly. While it is possible to  run POP with 
explicit treatment of the Coriolis terms, we strongly recommend against this because of the above- 
mentioned compuational mode. The following discussion assumes the Coriolis terms are treated 
semi-implicitly, 

The simultaneous semi-implicit treatment of both Coriolis and vertical mixing terms leads to 
a coupled system where both components of velocity must be solved for simultaneously. To avoid 
this, we employ an operator splitting which maintains the second-order accuracy of the time 
discretization. To illustrate this splitting, we write the momentum equations in the matrix form 

U' - un-l + TBTP = TF + T A ( ~ ) T I ~  

T = 2At ,  u =  ( ::) , B =  ( 0 -f ) , A(p)  =S,pS, 
f 0  

where u is the velocity vector organized in block form and B is a 2x2 matrix in the space of 
the two velocity components. F represents all other terms in the momentum equation that are 
treated explicitly (advection, metric, pressure gradient and horizontal diffusion terms). The time- 
averaging of the velocities i i a T  and iix are given by (95) and (96). Equation (103) can be rewritten 
as 

[I - X T A ( ~ )  + a r B ] A u  = r{F - B[yun + (1 - y)un-'] + A(p)un-')  f TF' 
AU E u'- un-' (104) 

(105) 

where I is the identity matrix. The operator splitting is given by 

[I - X T A ( ~ )  + ~ T B ]  = [I + a.rB][I - X T A ( ~ ) ]  + S(.r2) 
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and thus second-order accuracy in time is maintained by dropping the O ( T ~ )  terms and solving 
the simpler system 

[I - X'rA(p)]Au = (I + ~ T B ) - ~ T F '  (106) 
The r.h.s. of (106) can be evaluated analytically using 

(I - CUB) 
1 

(I + a'rB)-l = 
1 + (arf)2 

Note again that the surface forcing is contained only on the r.h.s. of (106). Furthermore, the 
quadratic bottom drag term (58) is evaluated at the lagged time (n - 1) and also appears only on 
the r.h.s. lagging the bottom drag term, the tridiagonal systems for u, and uy are linearized 
and decoI+,?ied, which greatly facilites their solution. Again, X = 0 is the explicit vertical mixing 
case. For implicit vertical mixing, X > 0.5 is required, and the code is typically run with X = 1. 
In the barotropic equations (Sec. 4.5) we choose a = y = 1/3, which is hardwired in the code, 
and it is clear from (95) that the Coriolis terms are centered at time n. 

Or forward and backward steps the splitting is given by 

Forward step: 
u'* - un + rBd = TF + rA(p)ii" 

or 
[I - X'TA(~) + OTBIAU = T[F" - Bu" + A ( ~ > U " ]  

AU E u'* - U" 

U/ - U" + T B ~  = TF + T A ( ~ ) s ~ '  

(108) 
Backward step: 

or 
[I - X ' T A ( ~ )  + OTBIAU = T[F* - Bu" + A(p)un] 

AU U' - U" (109) 

where r = At, Fn represents the advection and hydrostatic pressure gradient terms evaluated at  
time n, and F* represents the same terms evaluated using the predicted variables from the forward 
step. In (108) and (109) TiA' is defined as in (100) and (101), respectively. Now employing the 
operator splitting 

[I - X'rA(p) + OrB] = [I + OrB][I - X17A(p)] + ( 3 ( ~ ~ )  (110) 
the tridiagonal systems analogous to  (106) are: 

Forward step: 
[I - X'TA(~)]AU = (I + 8rB)-'r[Fn - Bun + A(p)u"] 

AU u'* - U" (111) 
Backward step: 

[I - X'7A(p)]Au = (I + OTB)-~T[F* - Bun + A(p)un] 

AU = u' - U" (112) 
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Again, t9 = 0.5 is hardwired into the code. 

4.5. Barotropic Equations 

POP uses the implicit free-surface formulation of the barotropic equations deveIoped by Dukow- 
icz and Smith (1994), arid this formulation is presented here. Other possible options are the rigid- 
lid streamfunction approach (Bryan 1969), the rigid-lid surface pressure approach (Smith et al., 
1992), and the explicit free-surface method (Killworth et al., 1991), which involves subcycling the 
barotropic mode with a smaller timestep than that used in the baroclinic equations. 

The prognostic equation for the barotropic velocity, defined by (99), is obtained by vertically 
integrating the momentum and continuity equations. The barotropic momentum equation in block 
form, analogous to (103), is given by: 

where 7 = p , / p , g  is the surface height, and FB is the vertical integral of all terms besides the 
time-tendency, Coriolis, and surface pressure gradient terms in the momentum equation. 

A prognostic equation for the free surface height q is 
obtained by vertically integrating the continuity equation 

4.5.1. Linear ]Free Surface Model. 

8 W  a dz(V.u+-) = -q+V*(H+q)U-qw = o ,  L dz dt  

where we have used the surface boundary condition on the vertical velocity: 

and U is the vertically-averaged horizontal velocity: 

where w(q) and u(v) are the vertical and horizontal velocities at the surface, and qw is freshwater 
flux. This result is derived using Leibnitz's Theorem to interchange the order of integration and 
differentiation. A difficulty with this form of the barotropic continuity equation is that, in the 
implicit time discretization of the barotropic equations, the term proportional to  q inside the 
divergence in (114) leads to a nonlinear elliptic system, and standard solution methods such as 
conjugate gradient algoithms cannot be directly applied to  it. To avoid this, POP uses a linearized 
form of the barotropic continuity equation which is derived as follows. Integrating the continuity 
equation over depth as before, but modifying the boundary condition (115) by dropping the term 
involving Vq (which can be shown to be of order IvJ/dzl relative to  the time tendency term), we 
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find: 

i” & h ( V . u + - )  = - q + V * H U +  d z V * u - q w  = o  8W d 
dz at 

1 0  

H -H 
u = -/ dzu(z) 

To obtain the linearized barotropic continuity equation we drop the term J:dz V u in (117), 
which corresponds to neglecting the horizontal mass flux between z = 0 and x = 7: 

This derivation makes it 
x = 0 and z = 7 must 
ingredients to the linear 
(120) instead of (114); 2) 

clear that in the advection operators the horizontal mass flux between 
be neglected in order to be consistent with (120). So there are four 
free surface model: 1) the barotropic continuity equation is given by 
the barotropic velocity is given by (119) instead of (116); 3) the vertical 

velocity at the surface, which is used to integrate the continuity equation from the top down, 
is given by (118) instead of (115); and 4) the horizontal mass fluxes between z = 0 and z = q 
should be neglected in the advection operators and when integrating the continuity equation to 
find the vertical velocites. In the discrete equations this means that the horizontal mass fluxes in 
the surface cells are proportional to the full cell height d x l ,  rather than dz l  +q (see Sec. 6.3). This 
linear approximation is valid provided the surface displacement is small compared to the depth 
of the full ocean: lql << H ,  and in the discrete equations the surface displacement must also be 
small compared to the depth of the surface layer: 171 << dx l .  

With a non-zero freshwater flux qw the mean volume of the ocean is not constant, even though 
the velocity field is divergence free. Integrating (120) over horizontal area, we find 

where da = d z d y  is the horizontal area element. So the total volume of the ocean will change 
unless the area-integrated freshwater flux vanishes. 

In the implicit free-surface 
formulation the continuity equation (120) is discretized in time using a forward step as follows: 

4.5.2. Time Discretization of the Barotropic Equations. 

(122) 
-a’ u = a’Un+l + (1 - a’)Un 

where a‘ is a coefficient used to vary the time centering of the velocity in the continuity equa- 
tion. The barotropic equations support three types of linear waves: two gravity waves (one in 
each horizontal direction) and one Rossby wave. In a pure leapfrog discretization, there would 
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be three computational modes, one associated with each of these waves. By choosing the for- 
ward discretization (122), one computational mode is eliminated, leaving one gravity-like and one 
Rossby-like computational mode. The Rossby computational mode is damped by the discretiza- 
tion scheme if the Coriolis terms are treated implicitly, and the gravity-wave computational mode 
is strongly damped if a' is close to 1. In Dukowicz and Smith (1994) it was shown that the opti- 
mal set of time-centering coefficients which maximally damps the computational modes, minimally 
damps the physical modes, and minimally distorts the phase speed of the physical modes is given 
by the parameter set: 

Thus in. (113) 

and similarly for Ti"'. These choices are hardwired into the code. The physical gravity waves are 
damped at  small space and time scales in this implicit scheme, but the physical Rossby waves are 
essentially unaffected. 

By inserting the barotropic momentum equation (113) into the continuity equation (122) we 
obtain an elliptic equation for the surface height at the new time qnfl .  However, due to the 
presence of the Coriolis terms, the resulting elliptic operator is not symmetric, making it much 
more difficult to invert, because standard solvers such as conjugate gradient methods require 
symmetric positive-definite linear operators. This problem can be overcome by using an operator 
splitting technique that maintains the second-order accuracy of the time discretization scheme 
(Smith et al., 1992; Dukowicz et al., 1993). Defining an auxiliary velocity 

6 G un+l + argV(qnf1 - $-I) (124) 

equation (113) can be written: 

(I -I- Q!TB)(U - Un-') = T{FB - B[yUn+(l-y)Un-'] - gV[yqn+(l-y)qn-l]} + O ( f r 3 )  (125) 

Dropping the C3(fr3) terms (which are the same order as the time truncation error in this second- 
order scheme), and using the continuity equation (122) with a' = 1, we arrive at the elliptic 
system 

(126) 1 IIln+l = v . H[- u + Vf-11 - - rln - - 4; [V * HV - -- 
garht g a r  g a r A t  gar 

The procedure is to first solve (125) for U, then solve (126) for qnS1 (POP actually solves for 
the surface pressure p ,  = pogq),  and finally use (124) to obtain Un+l. This system is solved in 
POP on leapfrog timesteps with a = 1/3 using a diagonally preconditioned conjugate gradient 
algorithm described in Sec. 4.5.3. Note that the terms dropped in (125) are only O(r3)  if the 
timestep is small compared to  the inertial period l/j. We therefore recommend that the model 
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timestep be no greater than about two hours. The scheme is stable for longer timesteps, but the 
barotropic mode will start to become inaccurate as the timestep is increased above two hours. 
The divergence on the r.h.s. in (126) is discretized with the correct B-grid discretization, i.e., the 
quantity in brackets is transversely averaged as in (36). The Laplacian-like operator on the 1.h.s. 
in (126) is a nine-point stencil with the correct B-grid discretization: 

Unlike the friction and diffusion operators, this operator cannot be approximated as a five-point 
stencil, because doing so would violate the energetic balance between pressure work and change in 
potential energy (see Dukowicz and Smith, 1994, and Sec. 3.6). Since the 9-point B-grid operator 
in (127) has a checkerboard null space (see Sec. 3.3.2), the solution of (126) is prone to have 
local patches of checkerboard noise. Strictly speaking, the operator on the 1.h.s. of (126) has no 
checkerboard null space due to the presence of the extra diagonal term (second term in brackets). 
However, if the solution in some region is in a near steady-state, this diagonal term is cancelled by 
the next to last term on the r.h.s., and checkerboard noise may appear. This is particularly true 
in isolated bays where the solution is only weakly coupled to the interior. On the other hand, the 
checkerboard noise has little effect on the dynamics because only the gradient of surface height 
enters the barotropic momentum equation, and the B-grid gradient operator (35) does not see a 
checkerboard field. The only way a checkerboard surface height field can affect the dynamics is 
through the vertical velocity at the surface (45), which depends on the change in surface height, 
and is used as the surface boundary condition to integrate the continuity equation to find the 
advection velocities. However, experience has so far shown that this does not lead to serious 
problems with the model simulations. 

It should be noted that the solution for surface height will only satisfy the continuity equation 
(122) to the extent that  the solution of (126) has converged in the iterative solution of the elliptic 
solver. As discussed in Sec. 3.3.1, this can lead to  a small non-divergent mass flux in the bottom- 
most ocean cell when the 3-D continuity equation is integrated from the top down with w given 
by (118) at  the surface, as discussed in Sec. 3.3.1. In practice, we suggest that  the convergence 
criterion for the iterative solver be chosen so that the global mean balance between pressure work 
and change in potential energy is accurate to within about three significant digits (see Sec. 3.6 on 
energetic consistency). 

The time discretization for forward and backwards steps, corresponding to (113) and (122) are 
given by: 

Forward step: 

Backward step: 
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where we have assumed a' = 1 as in (122) and (123). U* and q* are the predicted barotropic veloc- 
ity and surface height from the forward step. FE contains all terms other than the Coriolis, surface 
pressure gradient and time-tendency terms in the barotropic momentum equation, all evaluated 
at  time n, and FL contains the same terms but evaluated using the prognostic variables predicted 
by the forward step. The operator splittings for the forward and backward steps, analogous to 
(124) and (125) are: 

Forward step: 
U zz U* + 8rgV(q* - q") 

(I + OrB)(fJ - U") = r{F$ - Bun - gVq"} + O ( f r 3 )  

U - = un+l 

(130) 
Backward step: 

n+1 - rl*) + kIV(77 
(I + 87B)(U - U") = r{Fi - Bun - g[f3Vq* + (1 - 8)Vqn]} + O(fr3)(131) 

Finally, the elliptic equations for the forward and backward steps analogous to (126) are given by: 

Forward step: 

(132) 1 6 77" 4; [V * H V  - -]q* = v * H[-  + Vq"] - - - - 
gt)rAt 967 gOr& g8r 

Backward step: 

4.5.3. Conjugate Gradient Algorithm. The most efficient method we have found for 
solving the elliptic system of barotropic equations (126) is to  use a standard Preconditioned 
Conjugate Gradient solver. The algorithm consists of the following steps to solve the system 
Ax = b given by (126) multiplied by the T-cell area. A is the symmetric positive-definite Laplacian 
type operator on the 1.h.s. in (126) (it is important to note that if (126) is not multiplied by the 
T-cell area then the operator is not symmetric), b is the r.h.s,, and z is the solution. Lower-case 
Greek and Roman letters are used, respectively for scalars and 2-D arrays, and (x, y) denotes a 
dot-product: (x, g )  = CZJ xtJ ytJ. 

PCG Algorithm: 

Initial guess x, 
Compute initial residual T ,  = b - Ax, 

(134) 
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Here 2 is a preconditioning matrix. This is usually taken to be a diagonal preconditioner 2 = C;’, 
where Co is the diagonal matrix composed of the central coefficient in the 9-point stencil corre- 
sponding to  the operator in (126). The code is set up to use a more sophisticated preconditioner 
consisiting of a 9-point operator which is a local approximate inverse of the true operator (Smith et 
al., 1992). This preconditioner is expensive to compute but is time independent and can be com- 
puted offline and read in by the code. To improve the initial guess, xo is linearly extrapolated in 
time from the solutions at the two previous timesteps. In the convergence criterion ( T k ,  r k ) z  < €73, 
a is the rms T-cell area. This normalization is somewhat arbitrary, but is chosen so that E has 
the same dimensions as the operator (126) before it is multiplied by the T-cell area averaged over 
surface ocean points. As discussed in Sec. 4.5.2, we suggest that  E be chosen such that the global 
mean balance between pressure work and change in potential energy is accurate to within about 
three significant digits. Typically this is achieved for values of e between 

1 

and 

5. Subgrid-scale Parameterizations 

5.1. Parameterizations of Horizontal Tracer Diffusion 

5.1.1. Laplacian Horizontal Diffusivity. The spatial discretization of the standard Lapla- 
cian horizontal tracer diffusion with a spatially varying tracer diffusivity A ,  is described in 
Sec. 3.3.2. 

5.1.2. Biharmonic Horizontal Diffusivity. Biharmonic horizontal tracer diffusion is im- 
plemented by applying the Laplacian operator (47) twice. Specifically, 

where the superscripts (4) and (2) refer to biharmonic and harmonic (Laplacian) operators, and 
DE) is given by (47) with AH = 1. A!) is the biharmonic diffusivity, which may be spatially 
varying, and should be negative for positive-definite diffusion. Here the biharmonic diffusivity is 
sandwiched between the two applications of the Laplacian operator. An alternate approach (not 
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implemented in the code), following Griffies and Hallberg (2000), is to include the square-root of 
-AH inside the second derivative of each Dii' operator. 

The transport equation of tracer cp is 
given by 

5.1.3. The Gent-McWilliarns Parameterization. 

(136) 
a d 
-p + (u + u*) v p + (w + w*)- p = R(cp) + ?I&), dt d z  

where the bolus velocity induced by mesoscale eddies is parameterized, from Gent and McWilliams 
(1990), as 

and the itedi isoneutral diffusion operator (Redi, 1982) for small slope can be written as 

R(P) = v3 * (K - v3 P) 7 (138) 
where the subscript 3 indicates the 3-dimensional gradient or divergence, Le., V3 = (V, -$). The 
sym netric tensor K is defined as 

This tensor describes along-isopycnal difFusion that is isotropic in the two horizontal dimensions. 
The di:Eusivity 61 is in general a function of space and time, and a parameterization for variable 
KI will be described at the end of this section. In POP, we write the bolus velocity in the skew-flux 
form (Griffies, 1998) : 

where we have used V3 u; == 0. The subscript 3 on the velocity indicates the 3-dimensional 
velocity, i.e., u: = (u*, w*). The antisymmetric tensor B is given by 

uj * 0 3 9  = V3 * (u: p) = -V3 (B - V3 v ) ,  (140) 

0 P Y I P Z  ' ) 
B = u (  0 0 0 P X I P Z  

-PxIPz - P y I P z  0 
By subsituting (141), the transport equation (136) is modified to 

(142) 
- - a a 

- - ~ p  + U S  V v +  w-c~, = R(9)  +Dv( (P) , ,  d t  dz R(v)  = V3 * (K +B) V 3 9 .  

Discretization of diffusion operator 

The discretization of the modified isoneutral diffusion term on the right-hand side of (142) 
closely follows that of Griffies et al, (1998), which guarantees the negative-definiteness of tracer 
variance. By taking the functional derivative of the following functional 3 
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[!!! Fig. 5 ,  LANL (RICK) will show the diagram of quarter cells for the functional discretization, 
defining all quantities in the above discrete equation.] 

it can be shown that the Redi diffusion term R(9) is discretized as 

XZ 

KI S; A,v] + terms in the y-direction, (144) 

where 
Ax(P = (Pi+l,j,k - (Pi,j,k 7 Az(P = (Pi,j,k+l - Pa,j,k * (145) 

The slopes S, and S, actually depend on the ratio of horizontal to vertical gradients of neutral 
surfaces, and are given by 

(146) 
apAEC3 - ,OpAxS 
aPAzO - &AzS sx = 

with a similar definition for Sg. Note that this definition involves the differences A,, A,, rather 
than derivatives, so (146) should be multiplied by the local aspect ratio dz /dx  to obtain the true 
slope of the local neutral surface. Here ap = -8 pp/80 and PP = 8 p p / d S ,  where 0 and S are the 
model potential temperature and salinity, and p p  is the potential density referenced to the local 
pressure (or depth). In the discretization, p p  and hence ap and PP in a given quarter cell should 
be referenced to the depth of the central point surrounding the quarter cells in order to avoid 
exciting a nonlinear instability due to spurious density fluxes (see Griffies et al., 1998). 

From the definition of slopes in (146), the slopes of neutral surfaces S = V p / p ,  are uniquely 
defined in each quarter cell around T-points while K~ is constant in each T-cell. No-flux boundary 
condition for tracers is satisfied by imposing KI = 0 for all cells adjacent to lateral and vertical 
boundaries. Due to the skew flux formulation of the bolus velocity in (140), /GI in the second term 
of (144) is replaced by KI - v in the code and KI in the third term by ICI + v. Also, the last term of 
vertical diffusion is always solved implicitly for numerical stability; in other words, it is replaced 
bv 

Two tapering functions are often applied to  the GM coefficient v and the Redi mixing coefficient 
/€I. The first is for physical reasons and reduces the GM coefficient in the upper boundary layer, 
see Large et al., (1997). Here the ocean is not nearly adiabatic, and so the GM parameterization 
does not apply; instead the isopynals tend to become more vertical because of the strong vertical 
mixing in the upper boundary layer. The tapering occurs where the depth is less than the local 
isopycnal slope multiplied by the local Rossby radius LR defined by LR = Ifl/co with co = 2m/s 
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and L R  is bounded by 15km 5 LR 5 100km. Two forms for the factor are in the code, with the 
second being fastcr because there is no sin function. 

(148) 
1 
2 

t anh  option : fl = - [l + sin (n(min(1, - x / ( l S l L ~ > )  - 0.5))] 

(149) 
1 
2 

else : fl == - + 2(min(l, - Z / ( [ S I L R ) )  - 0.5)(1 - Imin(1,  - z / ( ISILR))  - 0.51) 

The second factor is to ensure numerical stability when the is0 ycnals become too steep. There 
are four options to reduce the coefficients ICI and u for IS1 5 S i r ” ) ,  where the maximum slope 
allowed can be different for 5’2 and Sfc,. The default values are S$ = Sfc, = 0.01. The first option 
was described in Danabasoglu and McWilliams (1995), and the second is a faster version because 
there is no tanh function. 

t anh  option : f2 = -[1 - tanh(lOlSI/Sg””) - 4)] (150) 
1 
2 

for IS/  > s;‘””, #I = v = 0. 

(151) 
1 
2 

n o  t a n h  option : f2 = -[1 - (2.5/SI/Sgr’”) - 1) (4 - IlO(Sl/S&’”’ - 41)] 

with f2 = 1 for IS1 5 0.2S$”) and f2 =I 0 for IS[ 2 0.6S, ( & I  ,VI . 
The third option is the clipping option described in Cox (1987) where the slopes are set to the 

maximum if they are diagnosed as larger. In this case, mixing occurs along the maximum allowed 
slope. This implies some cross isopycnal mixing when the slopes are steep. The default values are 
s;; = §b = 0.01. 

The fourth option is described in Gerdes (1991) and the factor is 

(152) (nr ,VI Gerdes option : fi = (S, 

when the slope is larger than the maximum slope. This option and the first two options retain 
the adiabatic nature of the parameterization. When ICI = v and S$ = Sh, the code runs much 
faster because the second term of (144) disappears and the third term is multiplied by 2. This 
is used in the CCSM ocean component. There, the KPP vertical mixing option is used, and the 
second option for f l  is used, but only down to the first model level below the diagnosed depth of 
the boundary layer. This leaves the GM mixing as large as possible below the boundary layer. 
The second option for f 2  is used in the CCSM, but the maximum slopes allowed are much larger 
than the default values with S z  = Sk = 0.3. 

Variable GM diflusivity 

Following Visbeck et al. (1.997), it is assumed that 
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where the default value of the constant Q is 0.13. In (153), the baroclinic length scale L E  and the 
Eady time scale TE are defined as 

where p is the meridional gradient of the Coriolis parameter and c is the first baroclinic wave 
speed given by c2 = -gH j’:: pa dzlp,,, z1 = -50m and z2 = -1000m. LE is also bounded 
below by the smaller horizontal side of each grid box. In the code, KI is set to be bounded by 
3 x lo6 5 KI 5 2 x 107cm2/s and KI is set to  the lower bounding value where the model depth is 
less than -zl. All values given here are presently hard-wired in the code. 

This 0’ ,n is not presently used in the CCSM ocean configuration. 

5.2. Parameterizations of Horizontal Viscosity 

5.2.1. Laplacian Horizontal Viscosity. The spatial discretization of the standard Lapla- 
cian horizontal friction terms with a spatially varying viscosity A, given by (29) is described in 
Sec. 1.4.2. 

In analogy to the biharmonic diffusion operator 
(135), the biharmonic viscosity is constructed by applying the Laplacian-like operator (28) twice. 
Specifically, 

5.2.2. Biharmonic Horizontal Viscosity. 

with a similar expression for Fgi. The superscripts (4) and (2) refer to biharmonic and harmonic 
operators, and .Ffi is given by (28) with AM = 1. A, is the biharmonic viscosity, which may be 
spatially varying, and should be negative for positive-definite dissipation of kinetic energy, Here 
the biharmonic viscosity is sandwiched between the two applications of the harmonic operator. 
An alternate approach (not implemented in the code) is to include the square-root of - A M  inside 
the second derivative of each harmonic operator (Griffies and Hallberg, 2000). 

An anisotropic formulation of the friction terms 
in the momentum equation was first introduced into an ocean GCM by Large et al., (2001). This 
was implemented in a model with a spherical polar grid, and their formulation was specifically 
tied to that coordinate system. A more general formulation of anisotropic viscosity that can be 
applied in any general orthogonal coordinate system was developed by Smith and McWilliams 
(2002, hereafter SM), and is implemented in the POP code. The friction operator is formulated 
as the divergence of a viscous stress tensor which is linearly related to  the velocity gradients. 
The general anisotropic formulation of the stress involves four independent viscous coefficients, as 
well as a unit vector n that  specifies a preferred horizontal direction which breaks the transverse 
isotropy. The coefficients and the direction vector may vary in both space and time. SM discuss 
two different reduced forms involving only two viscous coefficients, A and B. In both of these 
forms, the friction operator in Cartesian coordinates has the following approximate form if the 
x-coordinate is aligned with n: 

(4) 

5.2.3. Anisotropic Horizontal Viscosity. 

Fx = A a:u + B 6’:. 
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Thus, the friction acts to diffuse momentum along the direction n with viscosity A, and perpen- 
dicular to n with viscosity B ;  this is true for the general operator, even when the coordinates are 
not aligned with n. 

The three independent elements 011, 022 and 0 1 2  of the symmetric transverse stress tensor aij 
are linearly related to  the elements of the rate-of-strain tensor e i ,  (where the subscripts 1 and 
2 refer to the z and y coordinates, respectively). In the first form discussed by SM, which is 
currently implemented in the code, the stress and strain-rate are related by 

A -B 0 ( 2 )  = [( -; A 0 ) + (A-B)nlnz ( (157) 
nS-n$ n;-nS 2121122 O B  01% 

where n 1  and n2 are the components of n along the 2 and y coordinates, respectively. In the 
second two-coefficient form, the relation between the stress and strain-rate is also given by (157), 
except that the first matrix inside the brackets on the right is replaced by 

0 B‘ 

3 (A’+ B‘) -+(A’+ B‘) 
-L(A’+B’) $(A’+B’) 0 

0 

The second form is actually independent of the horizontal divergence, and can be written in the 
more compact, form: 

where oT = 011 - 0 2 2 ,  os = 20.12 ,  eT = e l l  - &22 and es = 2 e 1 2 .  The second form is currently not 
in the code but will be implemented in a future version. The two forms are equivalent up to terms 
proportional to the horizontal velocity divergence V u = k l l  + 622 which is very small compared to 
typical velocity gradients in geophysical flows, as discussed by SM. The first form was essentially 
constructed so that it exactly produces the Cartesian friction operator (156) ,  whereas the second 
form was derived as the limit V u -+ 0 of the general 4-coefficient form of the stress. For this 
reason, the second form has a more sound physical basis, however, the results using the two forms 
should in most cases be very similar. 

In both forms the stress is invariant under a rotation of n by 90”. Currently there are three 
options in the code for the field of unit vectors n: (1) aligned along the flow direction (n = u/lul); 
(2) aligned with due East (or, equivalently, with any of the four cardinal directions); and (3) 
aligned with the local grid coordinates (in polar coordinates this is equaivalent to (2), but it is 
different in general orthogonal coordinate systems such as the displaced-pole grids described in 
Sec. 7.2) .  With any of these choices, the isotropic limit is obtained by equating the two coefficients 
A = B. The first form reduces to the original anisotropic formulation of Large et  al. (2001) when 
n is oriented eastward. 
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The spatial discretization of the anisotropic friction operator is discribed in detail by SM, and 
will only be briefly reviewed here. The basic idea of this approach is to take advantage of the fact 
that the friction operator can be written as the functional derivative of the area-integrated energy 
dissipation rate. Using the no-slip lateral boundary conditions on the velocity, it can be shown 
that the domain-averaged dissipation of kinetic energy due to friction is given by 

where F is the friction vector and D is the energy dissipation rate: 

1 
D = - 6 : a .  

2 

To ensure positive-definite dissipation of kinetic energy, the viscous coefficients must be chosen to 
satisfy D 2 0. It  can be shown that in the first form this leads to the constraint A 2 B 2 0, 
whereas the second form has the less restrictive constraint A 2 0, B 2 0. The ith component of 
the friction is given by 

where & denotes a functional derivative with respect to  the ith component of the velocity. The 
procedure for deriving the discrete operator is to first discretize the functional, making sure that 
the discrete form is positive definite, and then take its derivatives with respect to the velocity 
components a t  a given point on the compuational grid; this yields a friction operator at  that 
point that is guaranteed to dissipate kinetic energy. As was done in the case of the GM operator 
described in Sec. 5.1.3, the method of discretizing the functional is to subdivide each horizontal cell 
into four subcells. This allows all quantities (such as viscous coefficients, gradients of velocities, 
etc.) required to construct the dissipation rate to be assigned a unique value in each subcell. In 
this manner the components of the strain-rate tensor are computed in each subcell, and from these 
the stresses are computed using (157). The specific details of the derivation are given by SM, and 
we will only quote the final result here The discrete friction operator has the form 

1 -  
F, = - [ h 2 w e  - h2011~ + h1m" - h ~ 7 1 2 ~  V 
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where F, and f$ are the components of the friction operator along the two general orthogonal 
coordinate directions z and y. The factors hl and hz are distances between grid points along the 
two coordinate directions, and IC1 and IC2 are meric factors proportional to the derivatives of hz and 
hl in the x and y directions, respectively. The overbars denote an average over the four subcells 
surrounding a given face (denoted by the superscript n, s, e, or w, for the north, south, east and 
west faces), and V is the full cell area. For a more detailed description of the quanities in (162), 
see the appendix of SM. 

The viscous coefficients are assumed to have a constant value within a given full cell, &e,, all 
four subcells within each full cell have the same values of the coefficients A and B. There are 
currently three options in the code for the form of the viscous coeffients: (1) constant values of A 
and B in both space and time, (2) spatially varying but constant in time; and (3) Smagorinsky- 
type nonlinear coefficients that depend on the local deformation rate and hence vary in both space 
and time. In options (2) and (3), the viscosities are tapered if they exceed one-half the viscous 
CFL limit. Specifically, both A and B are tapered as follows: 

1 
1 A = min(A, -ACa) 
2 

where d t  is the model momentum timestep, and dz and dy are the grid spacings in the two 
coordinate directions. For option (l), A and B are simply set to different, constant values. The 
model does not enforce the limit, if they exceed Acfl; only a warning message is printed. If A < B ,  
the integration is terminated with an error exit. 

Option (2) is used in the coarse resolution configuration of the CCSM-2, which has a resolution 
of about 3". The spatial dependence of the coefficients is computed following Large et al. (2001) 
with very minor modifications. The two primary design criteria are to have viscosity at values 
appropriate for the parameterization of missing meso-scale eddies wherever possible and to use 
other values only where required by the numerics. The parallel coefficient AI is given by 

(164) 
1 

A I =  maxi  ~ ( 2 )  ~ ( 4 )  max[dlt., dy], Aeddy}, 

where the first part represents the grid Reynolds number constraint, and Aeddy is a physical, lower 
bound set to account for all the missing mesoscale eddy activity, The product V ( x ) F ( $ )  produces 
a reasonable, a priori velocity distribution with large values near the equator, diminishing both 
with depth and polewards. Thus, 

with V, = 1 m s*-I and the e-folding depth D = 1500 m, and 
V ( x )  = v, e w ( x / D ) ,  (165) 

F ( # )  = 0.425 cos(6$) + 0.575 for _< 30°, 
F ( # )  = 0.15 for I#[ > 30". (166) 

The perpendicular coefficient BI is constructed as 

I 
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The first part represents a numerical, Munk viscous western boundary constraint with 

p(x) = LG' max(0,x - xN) , (168) 

where p(x) causes B1 to fall off as fast as possible away from the western boundaries. Here, XN 
is the zonal coordinate of the Nth grid point east of the nearest western boundary and L M  is a 
length scale. Viscosity is not similarly increased near zonal and eastern boundaries because doing 
so does not reduce numerical noise. Also, C ~ ( M  0.2) is a dimensionless coefficient, and ,B is the 
meridional gradient of the Coriolis parameter. In the second part, represents a physical 
lower bound which can be increased away from the equator to control possible numerical noise, 
using the dimensionless coefficient c2. In most applications, Beddy = Aeddy. 

To obtain the final distributions of A and B,  the viscosities are tapered if they exceed one- 
half of the viscous CFL limit, and the positive-definite dissipation of kinetic energy constraint is 
enforced: 

1 

1 
A = min(A1,ZAcfl), 

B = min(B1, 5Acfl), 
A = min(A,B). (169) 

5.2.4. Smagorinsky Nonlinear Viscous Coefficients. The code is set up to  option- 
ally allow for Smagorinksy-type nonlinear dependence of the coefficients on the deformation rate 
(Smagorinsky, 1993) if the anisotropic functional discretization described in Sec. 5.2.3 is used. This 
option is not available with the simple Laplacian-like friction operator given by (29). An isotropic 
form with the same Smagorinsky-type nonlinear viscosity can be obtained by simply setting the 
two anisotropic viscous coeffieicnts A and B equal to one another. 

The deformation rate b is proportional to  the norm of the strain-rate tensor: 

This is particularly easy to evaluate since the strain-rate tensor is already computed in the code. 
Specifically, the nonlinear coefficients A and B are given by 

1 A = min[max(C,bds2, V,  d s ) ,  2 A C ~ ]  

(171) 
I 

B = min[max (C&bds2, V, ds) , ,Acfl] 

where ds = min(dx,dy) is the minimum grid spacing in the two coordinate directions. C, and 
C, are dimensionless coefficients of order 1, and V,  and V,  are velocity scales associated with the 
grid Reynolds number which determine a minimum background viscosity in regions where the 
nonlinear viscosity is too small to control grid-point noise. Typically V, and V, are order 1 cm s-'. 
Acfl is the maximum viscosity allowed by the viscous CFL limit, see Eq. 163. The advantage 
of the nonlinear viscosities (171) is that they selectively apply the friction operator in regions of 
strong shear. 
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In the high resolution configuration of the CCSM-2, which has a resolution of about lo, the 
Smagorinsky coefficients have been modified in a similar manner to the anisotropic coefficients 
in Large et al. (2001) described above. Again the reason is to control numerical noise in the 
solutions. Eq. (171) has been modified such that 

A = min max CA  FA(^) D ds2, A1 , !jAcfi , [ (  > I  
CB FB(4) b ds2, BI) , ?Acfl], 

with 

F A ( @ )  = 1, 
F B ( @ )  = 0.02 for 141 5 20", 

= 1 - 0.98 ezp(-(4 - 20)2/98) for 141 > 20". (173) 

Here, ds = min(dz, dy) is the minimum grid spacing in the two coordinate directions. CA and C, 
are dimensionless coefficients of order 1 whose latitudinal dependencies are given by FA and FB,  
respectively. The positive-definite dissipation of kinetic energy is enforced by the last equation in 
(169). Where these nonlinear viscosities are too small, A1 and B1, with the same formulations as 
in the previous section, provide lower limits to control any grid-point noise. 

5.3. Parameterizations of Vertical Mixing 

Vertical mixing is treated using the spatial discretizations presented in sections 3.3.3 and 3.4.3. 
The implicit time discretizations are presented in Secs. 4.2.2, 4.2.3, and 4.4.2. POP contains three 
different parameterizations for computing the vertical diffusivity K (VDC in the code) and viscosity 
p (VVC in the code): constant coefficients, a parameterization based on the gradient Richardson 
number by Pacanowski and Philander (1981) and the K-profile parameterization (KPP) of Large 
et al. (1994). 

Convective instability can be handled in two ways within the code. If 
implicit vertical mixing is used, convection is generally treated by assigning a very large diffusivity 
and viscosity when the density profile between two cells in the vertical direction is statically 
unstable. The diffusivity and viscosity in each case is determined at run time through namelist 
inputs (convect-diff, convect-visc). 

If explicit vertical mixing is used, convection is usually treated using convective adjustment. 
During convective adjustment, multiple passes through the water column are performed to check 
for stability and to adjust tracer values. Each pass in turn consists of two sweeps. The first 
sweep checks odd-valued vertical levels; the second checks even-valued levels. At each level k, the 
stability between level k and level k + 1 is checked (see below for stability criterion). If the two 
cells are found to be unstably-stratified, the tracer in each level is adjusted using 

5.3.1. Convection. 
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If tracer acceleration (Sec. sec:tracer-acceleration) is being used, the thicknesses dz are adjusted 
by the acceleration factor 

Instability can be determined using one of two methods. In both the Richardson number 
parameterization and KPP, the Richardson number is computed and the column is unstable when 
the Richardson number is less than zero. The calculation of Richardson number differs slightly 
between the two and is shown in each section below. 

If the Richardson number is not computed, stability is determined by adiabatically displacing 
a water mass from the current vertical level k to the level IC + 1 just below. The density of the 
parcel after this displacement, denoted p i ,  is computing by calling the equation of state with the 
temperature and salinity from level k ,  but evaluating the equation of state at  level IC + 1. If the 
density after the displacement is greater than the actual density at the level IC + 1, the column is 
unstable. 

If this option is chosen, the vertical diffusivity VDC 
and vertical viscosity VVC are simply constant at all levels and for all tracers. The scalar constant 
values const-vdc and const-vvc are determined at run time through namelist input. 

5.3.3. Richardson Number Dependent Mixing. In this parameterization, the vertical 
diffusivity and viscosity are functions of the Richardson number, 

5.3.2. Constant Vertical Viscosity. 

Ri = -9 ( P i  - (K)-2 
L ( d z ( k )  2 + dz(k  + 1)) dz 

where the velocities are evaluated at tracer points and e is simply a small number to avoid dividing 
by zero. 

The particular functional forms for the diffusivity IC (VDC) and viscosity p (VVC) used in the 
code are 

= Kbkgrnd ( p b c k g r n d  + Rich-mix/(l + 5Ri)2)/(1 + 5Ri) (178) 
= p b c k g r n d  -k Rich-mix/(l + 5Ri)2 (179) 

where the background values ICbkgrnd and pbckgvnd  and Richardson mixing coefficient Rzch-mix are 
determined at run time through namelist input. Note that the Richardson number used for the 
viscosity p has been averaged from tracer points to velocity points. 

5.3.4. The KPP Boundary-Layer Parameterization, The full KPP parameterization 
is detailed in Large et al. (1994),  hereafter LMD, so only a general overview plus specifics of the 
current POP implementation are described here. The scheme provides all the coefficients required 
to compute the vertical mixing contributions to both &,(a) in Eq. (7 ) ,  and Dv(cp) in Eq. (11 ) .  
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As' such, it should not be used in conjunction with any other parameterization of vertical mixing. 
Implicit vertical mixing is required to solve Eq. ( 7 )  and a modified version of Eq. (13); namely, 

where the additional non-local transport term, T~ is non-zero only in convective (unstable) forcing, 
and above a diagnosed boundary layer depth, h. In the ocean interior below h, the viscosity, PI, and 
diffusivity, / G I ,  represent very different physics than their boundary layer, z < -h, counterparts, 
denoted pB and K B ,  respectively. 

to the scheme on the tracer grid are the surface forcing and vertical profiles of 
ternperaLixe and salinity. The specific forcings are the surface friction velocity, u*, both the solar, 
Bsol, and non-solar, B,,, buoyancy fluxes, and the kinematic surface tracer fluxes, Wcp,. From the 
equation of state and its buoyancy form, b(O, S ,p) ,  derived profiles are the thermal and haline 
Boussinesq coefficients, aT and P S ,  the local buoyancy difference at  each interface, Abk+.5, and 
the ',xcess buoyancy of first level water when moved down to each grid level, 

The , 

The local vertical shear at each interface is squared before being averaged onto the tracer grid, as 
Sh;,.,. Similarly, velocity differences with the first level are squared, then averaged to the tracer 
grid to give 

For vertical resolutions of l m  or less, excessive sensitivity can be avoided if 01, SI, u1 and v1 in 
the above equations are replaced by averages over the upper 10% of the boundary layer (LMD). 
A local gradient Richardson number, Rig, buoyancy frequency, N ,  and density ratio, R,, on the 
tracer grid are computed as 

IAVli  =: I ( w J 1 )  - ( W d J k ) l 2  * (182) 

It is then a four step process to complete the algorithm, as described below. First, the interior 
mixing coefficients are computed at all model interfaces, on the tracer grid, as if there were no 
boundary layer scheme. These are the sum of individual viscosities and diffusivities corresponding 
to a number (currently up to four) of different physical processes: 

The first coefficients on the right hand side are background values associated with internal waves. 
Their vertical variation has the general form 

rcw = vdcl + vdc2 tan-l((lzl - dpth) linv), 
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where vdcl equals the vertical diffusivity at  JzJ  = D, vdc2 is the amplitude of variation , linv is 
the inverse length scale of the transition region, and dpth  is the depth where diffusivity equals 
wdcl. These constants are namelist specified as bckgrnd-vdcl (cm2/s), bckgrnd-vdc2 (cm2/s), 
bckgrnd-vdc-linv (cm-l), and bckgrnd-vdc-dpth (cm), respectively. The form allows for an 
increase in diffusivity with depth, as a crude parameterization of the observed increase in deep 
mixing over rough topography. The viscosity has the same form, but multiplied by a constant 
Prandtl number, Prw (Prandt l  in namelist). 

The viscosity and diffusivity associated with shear instability mixing are equal (Pr ,  = 1) and 
parameterized as a function of Rig: 

0 < Rig < Rio. 

This computation is enabled with a namelist flag ( l r i c h  = .true.). For an unstable profile with 
negative Rig the coefficients remain constant at IC: (richrmix (cm2/s )  in namelist), and are zero 
for all Rig 2 Rio. This function falls most rapidly near Rig = 0.4Ri0, where it approximates 
the onset of shear instability. In this neighborhood rapid changes in Rig can cause instabilities 
to develop in the vertical, but these are largely controlled by vertical smoothing Rig profiles. A 
1 - 2 - 1 smoother is repeated a specified number nun-v-smooth-Ri of times. 

Convective instability in the interior ocean is reIieved by setting the mixing coefficients, p, and 
IC,., to large values whenever the density profile is unstable, N < 0. Otherwise, they are set to 
zero. 

Double diffusion processes have the potential to enhance diffusivities, but not viscosity, with R, 
the governing parameter. They are enabled or disabled with a namelist flag ( ldb l -d i f f  = .true. 
or false.). In the salt fingering regime (destabilizing salinity profile and 1 < R, < R: < 2), the 
thermal diffusivity is less than that of salt (LMD). For salt 

The magnitude is internally set by K:, which should be less than lcm2/s.  Diffusive convective 
instability occurs where the temperature is destabilizing and 0 < R, < 1. For temperature 

where VISCM is molecular viscosity. Multiplying this diffusivity by a factor 

(1.85 - O.85RT1) R, 0.5 5 R, < 1 
0.15 R, R, < 0.5, 

gives diffusivities for other tracers, including salt. 
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Second, the diagnostic boundary layer depth, h, is determined on the tracer grid. A bulk 
Richardson number relative to the surface is defined at each vertical level as 

LMD gives the rationale and expression for the shear contribution from unresolved turbulence, 
& / d .  The boundary layer depth is equated to the shallowest depth, where Rib equals an internally 
specified critical value, Ri,, = 0.3 (LMD). With stabilizing surface forcing, options exist (namelist 
flag lcheckekmo = .true.) to limit h to be no greater than either the Ekman depth (0.7u*/f), or 
the Monin-Obukhov depth (Lmo = ~ * ~ / ( v o n k  B f ) ) ,  where vonk is the von Karman constant, and 
the surface buoyancy flux, Bj ,  is B,, plus a fraction of Bsol (LMD). The grid level immediately 
below h is denoted as kb. 

Third, the boundary layer mixing coefficients are computed on the tracer grid and replace the 
interior values from step 1, for 1.5 5 Ic 5 kb - $. The analytic expression is 

p B ( o )  
K C ~ ( C T )  = vonk wP h G(u) , 

= vonk w, h G(a)  

where CT = - z / h  varies from 0 to 1 over the boundary layer. The turbulent velocity scales, w, 
and wv are usually proportional to u*, but become proportional to  the convective velocity scale 
as u* -+ 0 in convective forcing (see LMD for details). The shape function is a cubic polynomial 
whose coefficients are chosen such that G(0) = 0, fluxes vary linearly near the surface, and interior 
and boundary layer coefficients, and their first vertical derivatives, are continuous at z = -h. An 
inherent bias to shallow boundary layers is ameliorated by making the coefficients at the kb - f 
interface linear combinations of the interior values at this interface, and the boundary layer values 
at both the interface and at the nearest higher level, kb - 1 (LMD). 

In convective (unstable) forcing situations the nonlocal term is non-zero, and evaluated as 

where the constant Cp is prescribed as in LMD. 
Fourth and finally, the viscosity is averaged from the tracer grid to  velocity points. 

6 ,  Other Numerical Features 

6.1. Advection Schemes 

[!!! to be done for 3rd order upwind scheme, NCAR] 

6.2. Penetration of Solar Radiation 

Setting the namelist flag lshortwave = .true. allows solar radiation to penetrate the water 
column. The solar absorption has the form of a double exponential, with the fraction of surface 
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short-wave solar radiation, SWFRAC, that reaches a depth, -2, given by : 

The first term on the right-hand side represents the rapid absorption of the longer wavelengths 
(reds), so the extinction coefficient depth1 is small (0.35 4 1.4m) and a fraction (0.58 5 coef 5 
0.78) of the radiation is in this band. The extinction coefficient depth2 for the shorter wavelengths 
(blues) is much greater ( 7 . 9 ~ 1  + 23m), These parameters are set according to a specific Jerlov 
water type, and are varied neither spatially, nor in time. An important restriction is that no solar 
radiation :>:isses through the bottom of the model ocean, lest it be lost to the system. Also, in 
order to I id numerical underflows associated with vanishingly small exponentials, SWFRAC=O 
for depths deeper than 200m. Jerlov water type Ib is used in the CCSM-2. 

6.3. Variable-Thickness Surface Layer 

The tracer transport equations have the form 

d a d 
- - ~ p  + V dt az dz 

UV+ - W C ~  = V * F  + -Fv (194) 

where V . F  = 2 7 ~  and &Fv = 2 7 ~  are, respectively, the horizontal and vertical diffusion operators. 
Integrating this equation over the model surface level (from -hl to  q,  where hl = dzl is the 
of the upper level) we find: 

In deriving (195) the same approximations used in the linear free surface model (Sec. 4.5.1 
employed: the boundary condition (118) was applied, and the advective and diffusive horizontal 
fluxes between z = 0 and z = q were set to zero. Note that there is no advection of tracers through 
the surface with the vertical velocity w(q). 

Some care must be taken to  specify the tracer fluxes through the air-sea interface. The total 
tracer flux seen by the ocean model at the surface is given by 

lepth 

(195) 

were 

where cp(7) is the tracer concentration at the sea surface and qwcp(q) represents the advection of 
tracers in the ocean relative to the sea surface due to the freshwater flux. The atmosphere (or sea 
ice model) sees a flux of tracers into the ocean given by 

where cpw is the tracer concentration in the freshwater being added or removed from the ocean, 
(for simplicity we assume here that locally there will be only one source of freshwater, and omit the 
sum over different types freshwater sources - see Eq.(42)), and Qcp is any additional flux of tracers 
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(e.g., for temperature in the open ocean it, corresponds to the sum of sensible, latent, shortwave and 
longwave heat fluxes). In reality there is a very thin boundary layer where the tracer concentration 
varies continuously and ( ~ ( 1 7 )  = c p ,  at the interface. The models do not resolve this boundary 
layer and so in general p(7) # c p w I  However, the total flux must be conserved across the boundary 
layer, so that FT = Q T ,  and this can be used to eliminate (~(17) in terms of cp,. Substituting (197) 
for (196) in (195), we obtain 

where now the flux QV is applied as the surface boundary condition on Dv. The integrals over 
the surface layer have been evaluated by assuming the model variables are constant within the 
surface layer. w1 is the velocity a t  the bottom of the surface layer and zulcp(h1) represents tracer 
advection through the bottom of the surface layer. Dividing (198) by hl, we arrive at the tracer 
transport equation (40). 

It remains to specify the freshwater tracer concentrations cpw . In the case of salinity the default 
choice in the code is ‘p, = S, = 0, that  is, the freshwater flux gw = P - E + R - Fice  + Adice is 
assumed to have zero salinity (where P ,  E ,  R, F i c e  and Adice are the freshwater fluxes associated 
with precipitation, evaporation, river runoff, freezing and melting of sea ice). In the case of 
potential temperature, the default is to assume the freshwater has the same temperature as the 
model surface layer, so that cp ,  = 0, =: el. However, in general the tracer concentration in the 
freshwater may vary depending on its source (precipitation, evaporation, etc.), and the default 
assumption that these are all given by a single value (p, as in (197) may be inadequate. When 
coupling to atmospheric or sea-ice models a more accurate accounting of the fluxes may be needed 
to ensure they are conserved between component models. 

Combining (198) with the transport equations in the subsurface levels and integrating over 
volume, we find 

Thus tracers are conserved in the absence of surface fluxes. This is also true of the time-discretized 
equations in the model. In particular, if there are no surface fluxes of salinity, QS = 0, and if the 
freshwater flux has zero salinity (9, = S, = 0), then total salt is conserved. 

The time discretization of (198) or (40) is given by (75) for leapfrog steps and by (80) and (81) 
for forward and backward (Matsuno) timesteps. All of these discrete equations conserve global 
mean tracers exactly in the sense of (199). 

There is also a small error in the time discretization associated with the fact that  we have 
adopted a three-time-level leapfrog scheme for the tracer transport equations (75), but a two-time- 
level discretization for the barotropic continuity equation (122). Note that in the limit of a constant 
tracer cp = 1 the continuous transport equation (194), in the absence of surface forcing, reduces 
to the continuity equation V * u + = 0, and the vertically integrated transport equations also 
reduce to the barotropic continuity equation (120). This does not hold for the discrete equations 
because of the inconsistency between the two- and three-time-level schemes. The consequence of 
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this is that a tracer which is initially constant in space may evolve to have some small spatial 
variations. However, this error is second-order in time and is typically extremely small. In a test 
problem involving the Goldsborough-Stommel circulation (see Griffies et al, 2000), which involves 
only freshwater forcing a t  the surface, the temperature field, which is initially constant, deviates 
from its inital value by only 1 part in lo7 in a 100-year integration, and furthermore, the error 
does not accumulate in time. Therefore, we feel that this error is small enough that it will not 
cause problems in long-term climate simulations. 

Finally, we note that there is a time discretization error when tracer acceleration is used (see 
Sec. 4.2.1) if the momentum timestep and the surface tracer timestep are not equal. This incon- 
sistency can quickly lead to a computational instability, and for this reason we strongly advise 
that the surface tracer and momentum timesteps be equal (the momentum and tracer timestep 
may differ in subsurface levels). 
6.3.1. Nullspace removal. 

6.4. Partial Bottom Cells 

[!!! this section needs checking and revision, LANL (RICK). Although PBC’s are not in the initial 
CCSM release of the ocean model, we expect they will be in the next release and hence will include 
them in the manual.] 
6.4.1. Pressure Error and Spurious Diffusion. To better represent the bottom topog- 

raphy, we employ the idea of partial bottom cells introduced by Pacanowski and Gnanadesikan 
(1998), for which the thickness of bottom cells is allowed to vary in space. When we place tracer 
or pressure points at the center of partial bottom cells, as shown in figure 5 ,  the finite difference 
for horizontal derivatives between two adjacent points introduces an error since these points are 
located at  different vertical positions. More specifically, when we compute the horizontal pressure 
gradient, we have 

a 
z=-h(x) 

where h(z)  can be regarded as the position of tracer points. Without the second term on the 
right-hand side of (200), the pressure gradient does not vanish even for p = p(z)  for which we 
expect pzlz=-h(,) = 0. Even though we include the correction term, p ,  vanishes only when p(z)  
varies linearly in depth, since p is computed from the hydrostatic equation p ,  = -pg by using the 
trapezoidal rule. Likewise, when we compute the horizontal diffusion of tracers without taking 
the effects of different vertical positions of tracer points into account, we also introduce spurious 
diffusion errors. To avoid these errors, the interpolation between two vertical points has been used 
in z-coordinate ocean models. More specifically, after finding T i , k  by linear interpolation between 
T i , k  and Z , k - l ,  

(Ti$ - z , k - l )  , (201) - min(hzi,k, hzi+l,k) - hzi,k 
Ti,k = Ti,k -k 

hri,k - hzi,k-l 
- 

where h, is the height of T-cells, the horizontal gradient is computed as A,T = T,+~,I, - T i , k ,  

as shown in figure 6. This approach seems to be correct but it does not guarantee the negative 
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definiteness of tracer variance: 'for example, for the Laplacian horizontal mixing, 

i,k (a2Ti,k) Ti,k 7 

is not sign-definite! A correct approach is to work with the functional which can be written as 

1 hyhz 
h, 

G[T] = -2 -(ax')2 , 

where hx and h, are the horizontal grid sizes of T-cells in the x and 1~ directions, respectively. 
Taking the functional derivative leads to the following discretization for the horizontal Laplacian 
diffusion: 

+ay [ (y)  Ey A y T ]  + Ay [ (2) A, (7h,daYF)]  . 

Since the correct discretization even for the simple Laplacian mixing is too complicated and thus 
expensive to employ, we have made the partial-bottom-cell implementation in POP in the following 
ways: ( I )  we leave the pressure points at the same z-levels which introduces no pressure error and 
guarantees energetic consistency. Even though some pressure points are underneath the ocean 
floor, the pressure is computed by extrapolating tracers, therefore density, to  pressure points. (2) 
when we compute the tracer gradients in diffusion operators, we make no interpolation for tracers. 
This approach introduces spurious diffusion errors but guarantees at least the sign-definite tracer 
variances, which has been given up in other OGCMs. Our test results show the error introduced 
by the second approach is so small that we can avoid any complication involving the interpolation. 

6.4.2. Discretization. After reading the height of bottom T-cells, POP uses two additional 
three-dimensional arrays for the thickness of T-cells, DZTi,j,k, and the thickness of U-cells defined 
as 

Due to these variable cell heights, the spatial discretizations described in Sec. 3 need to be modified 
as shown in the following. 

DZUi,j,k = min(DZTi,j,k, DZTi+l,j,k, DZTi,j+l,k, DZTi+l,j+l,k) - (205) 

Tracer .Advection: 

where AiuiT) = DX(U, T), AFT) = DY(TJ, T), H(UjT) = DZ(U, T), and the vertical velocity w at 
bottom T-cells is found as 
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Laplacian Horizontal Tracer Diffusion: 

Vertical Tracer Diffusion: 

Momentum Advection: 

Laplacian Horizontal Friction: 

where Ax=HTN, Ay=HTE, A$=HUS, Ah=HUW, and 

Ai  = min(DZUi,j,k, DZUi+l,j,k), Ai  = rnin(DZUi,j,k, DZUi,j+l,k). (213) 

The last term of (212) is the drag due to  the no-slip boundary condition at lateral boundaries. 
Metric terms in the momentum advection and horizontal friction remain unaffected by partial 
bottom cells. 

Vertical Friction: 

Hydrostatic Pressure: Since we leave the pressure points at the middle of full cells, the hydrostatic 
pressure is computed in the same way as for the full-cell case. 
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Biharmonic Horixontal Diflusion and Friction: The same operations for the Laplacian diffusion 
and friction given by (208) and (212) for ‘p and u, respectively, are applied twice. 

Isopycnal Dzflusion: 

rY)l 1 
HT A; +- 6, [A, ( H T  Kzy6ycp - HT K Sy 6,p 

z 

(215) 
1 6, -z HT A,A% K Sy 6ypyz - HT A,A$ K Siy Sz9)] , 1 -- 

ArAT [F( 
where Ax=HTN, A,=HTE, A%=HUS, Ab=HUW, S, = 6,p/Szp, and S, = S,p/S,p. In (215), 
for example, in the (2, x)-plane, K in the two quarter cells in either the east or west direction of 
T-cells right next to any partial cell is reduced to 

where d z k  is the full-cell height. Similar reductions are made for K in the (y,x)-plane, too. Also 
K; in the lower half of T-cells right above any partial cells and K in the upper half of any partial 
cells are modified to 

bottom H$,k top - H T i , j , k  
Ki,j ,k-l ,  K i , j , k  - -Ka, j ,k  

d z k  dzk 
%,j,k- 1 - 

Remember that K at the lower half of bottom T-cells is set to zero. 

Anisotropic Viscosity: 

(219) 
1 1 55 

nyH(u) -6 ( & ~ 2 2 ’ )  + --&(A,YoN’) - 4 k 2 & ~ 1 1 ~ ~  + & & i A y ~ i 2  , 
A: A,. 

where A,=HTN, A,=HTE, y r= 1 at four quarter cells a t  the centered U-cell and y’s are defined 
in two quarter cells adjacent to the U-cell in the east, west, north and south directions as 
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Due to no-slip boundary conditions imposed at  lateral boundaries, the velocity gradients to com- 
pute the stress tensor CT are re-defined as 

1 
(222) 

1 
(k4e = - (yeui+l,j,k - % , j , k )  , ( S x q  = - ( U i j , k  - y%-l,j,k) , a, A X  

where k t ,  ky, k?j and ki  are the metric terms defined on the east, west, north and south faces. 

7. Global Orthogonal Grids 

7.1. Dipole Grids 

7.2. Tripole Grids 

[!!! to be done, LANL (RICK)] 

8. Forcing and Coupling Issues 

8.1. Sea-Ice Formation and Melting 

Air-sea heat fluxes, when applied over a time interval, can produce regions of subfreezing model 
upper-layer temperatures. This situation can be alleviated by adjusting the model 0 and S (and 
the first layer thickness, if the variable surface thickness formulation is used with freshwater fluxes) 
that  is associated with frazil sea-ice formation. The choice of when to perform such adjustments 
is judiciously made to  ensure tracer conservation with minimum adjustments. So, in coupled 
simulations with averaging as the time mixing option, such ice formation time steps are performed 
at both the coupling time step and the time step just prior to it so that both branches of the 
leap-frog time steps are brought to the freezing temperature which will then be used over the next 
coupling interval. If Matsuno time mixing option is selected, checking for ice formation only at the 
coupling time steps is adequate because the first time step of the next coupling interval is Matsuno 
and the unadjusted branch of the leap-frog time steps will be ignored. The following algorithm 
describes the procedure for the virtual salt flux formulation, default for the present integrations. 
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-4fter 0 arid S are updated, the upper kmxice model layers (denoted by index k )  are scanned 
for 0 helow the freezing point, Of. Here, kmxice is a model namelist input in ice-nml and, at  
present,, Op is not a function of local salinity s k ,  but Of = -1.8" C. Although we describe the 
most general case here, in practice we do recommend setting kmxice=l, because unless a monotone 
advection scheme is in place, model advective errors could lead to 0 far below freezing in some 
deep locations and the scheme will form too much ice. 

At each layer, the potential mass per unit area of ice formation ( P O T I C E k  > 0) or ice melt 
( P O T I C E / ,  < 0) is computed as 

where psw and cp are the density and heat capacity of sea water, respectively, Lj is the latent 
heat offusion, A Z k  is the layer thickness, and 01, is the local potential temperature. Any ice that 
forms at  depth is assumed to float towards the surface and this ice flux, Q I C E k  (defined positive 
dowqwards so Q I C E k  _< 0), is accumulated bottom to top as 

k 

Q I C E k =  - P O T I C E k ,  
kmxice 

assuming no ice formation below the kmxice layer, Le. QICEk=kmzice+l  = 0. As ice floats to  the 
surface, it can either partially or completely melt in upper layers whose temperatures are above 
freezing. 

At each layer, 0 and S are both adjusted in accord with the ice formed or melted in the layer: 

For S ,  this is equivalent to replacing a volume of formed ice at salinity Si with an identical volume 
of water at aalinity So. Here Si and So represent sea ice and ocean reference salinities, respectively, 
and they are set to constant values in order to  ensure salt conservation. In addition, if POP is 
coupled to a sea-ice model, both must use the same value for Si (presently in CCSM-2, Si = 0). 

The ice flux is accumulated at each location over the number of ice formation time steps, N ,  
during a coupling interval as 

N 

where weight1 is either 1 /2  or 1 depending on whether it is an averaging time step or not. 
If, at the end of a vertical scan, the surface temperature 01 remains greater than freezing, 

( Q I C E k Z 1  = 0), then the excess heat melts previously formed ice, and ACJICE,  01, and SI are 
adjusted accordingly. Thus, over a coupling interval, ice is assumed to  remain where it was 
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formed. In coupled simulations, the accumulated ice during a coupling interval is passed to an ice 
model via the flux coupler as an equivalent downward heat flux, QFLUX in W m-2: 

QFLUX = - -Lf weightz AQICE 
At* 

where AQICE includes any adjustment due to melting previously formed ice over the last timestep, 
At* = 1 day is the coupling interval, and weight:! is either 1 / 2  or 1 depending on averaging or 
Matsuno time steps, respectively. In the last two equations, the presence of weights assures that 
0 and S budgets will be conserved when the averaging option is selected where, after averaging, 
actual 0 and S changes become 1/2 of what is implied by the ice formation fluxes. 

Thus, 0 and S adjustments corresponding to the total ice formed (QFLUX > 0) are made 
prior to the ice being passed to the sea-ice model. However, warm surface model temperatures 
result in QFLUX < 0, which is a potential to melt ice in the sea-ice model. Since the ocean does 
not know if sufficient ice is present at a given location, 0 and S adjustments are delayed until 
the appropriate heat and freshwater fluxes are received back from the sea-ice model through the 
coupler. If sufficient ice is present in the absence of all other fluxes, the heat flux will be equal to 
the cooling needed to make 01 = Of, when applied over the next coupling interval. 

The ice formation option can also be activated in ocean-only (uncoupled) simulations subject 
to observational or reanalysis based air-sea heat fluxes. In this case, the accumulated ice is used 
internally for local ice formation and melt, and AQICE is saved in restart files for exact continuation. 
If the Matsuno time step mixing option is chosen, the ice time steps are set to be the time steps 
just before a mixing step by default. For the averaging time step option, the default is to form ice 
every time step. 

The POP ice formation subroutine contains a modified algorithm when the freshwater flux 
formulation is chosen. Here, the volume of ice formed at layer IC is replaced with an equal volume 
of water (because the thickness of the below surface layers cannot change) from the layer above 
with salinity S k - l .  The surface layer S can change both through exchanges of S with lower layers 
and change of thickness due to formed ice sent to  the ice model. Because there still remain some 
consistencies and scientific issues with ice formation and melt when freshwater fluxes are used, 
this algorithm has not yet been tested, and is not recommended to be used at the present time. 

8.2. Surface Freshwater Flux Balancing over Marginal Seas 

Unlike the surface heat flux and SST, there are no appreciable feed-backs between the surface 
freshwater flux and S. This is particularly so in isolated marginal sea regions where the freshwater 
fluxes can produce unphysical S values throughout the water column. The situation can be 
especially severe in coupled integrations when the marginal sea regions receive river run-off fluxes. 
In uncoupled integrations, one obvious remedy is to use restoring freshwater or salt fluxes instead 
in these regions where the surface S is restored to some climatological distribution with a relatively 
small restoring time scale. In this section, we describe a more novel approach, particularly designed 
for coupled integrations. Here, the amount of excess or deficit of freshwater flux over a marginal 
sea is transported to  or from its associated active-ocean region, thus implicitly connecting marginal 
seas with active ocean and providing a means for marginal sea run-off to eventually discharge into 
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the open ocean. 'This process assures that the volume-mean S stays constant throughout the 
integration within each marginal sea, eliminating any unphysical values in S .  

When balancing is requested, the active-ocean regions corresponding to each marginal sea, 
ms, are determined at the beginning of each integration. For this computation, a longitude, 
a latitude (both in degrees), and a distribution active-ocean area size (in cm2) are provided in 
the region-info-filename for each such region. Using the longitude and latitude values as 
starting points, a search window is created to find the active-ocean points associated with each 
ms. This iterative process continues until the cumulative active-ocean grid areas match the input 
distribution size. At each iteration, the search window is increased by 1" on all four sides. If 
the hard-coded values for either the maximum number of iterations or the maximum number of 
active-ocean grid points per ms are exceeded, POP will stop with an errqr message. 

The h a 1  product of this initialization procedure is a global array of area fractions for each ms, 
FCs.  In F ,  the fractions are computed simply as the ratios of grid areas to  the total computed 
distribution area. It is ensured that the sum of these area fractions for each rns is unity. The 
distribution regions for different rns can coincide. Note that,  the zero elements of F represent the 
ocean points outside of the designated regions. 

In fully coupled integrations in which the surface fluxes stay constant till the next coupling, 
balancing is performed once per coupling interval, immediately following the arrival of the new 
fluxes. If the fluxes do change during a coupling interval (e.g. partially-coupled option), then 
balancing is done every time step. For each ms, a transport term, T ,  is evaluated in Kg s-l of 
freshwater : 

where only the fluxes over the marginal seas contribute to the sum which is performed over each 
rns individually. In the above equation, QFLUX > 0 is the frazil ice formation in W m-2 and E ,  
E', R, and M represent the evaporation, precipitation, river run-off, and ice-melt freshwater fluxes 
from the coupler in Kg m-2 s-'. F s  is the salt flux due to ice melt in Kg of salt m-2 s-l; because 
S, = 0 in the current CCSM-2 simulations, F S  is also zero. Finally, A x  and Ay are the zonal and 
meridional grid spacings (in m) centered at 0 points, respectively, and cq and c, represent unit 
conversion factors given by 

Tm5 represents the amount of excess or deficit freshwater flux for marginal sea ms that needs 
to be transported to or'from its associated active-ocean region. How much of Tm3 is transported 
to or from an active-ocean grid point is determined by 

Fi73 Tm3 
111 ST Fi,j = 

Axi,j AYi, j '  

At these points, the surface freshwater or salt flux is modified as 

SFt'w = S F f  f C t  MSTFi j ,  

(234) 

(235) 
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where ct = -So/pfw or ct = 1 depending on if POP is forced with virtual salt or freshwater flux 
boundary conditions, respectively. 

In marginal seas where there is no frazil ice formation, the surface freshwater flux is set to zero. 
Otherwise, the surface flux is simply -MAX(O, QFLUXi,j)c,ct to undo the S adjustment that has been 
done in the previous time steps. 

Because this algorithm has not yet been used with the freshwater flux formulation, its use is 
not recommended with that formulation. 
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